|
阿尔茨海默病circRNA的差异表达及生物信息学分析
|
Abstract:
目的:通过生物信息学方法,探讨阿尔茨海默病(AD)患者外周血中差异表达的环状RNA (circRNA)的生物学功能。方法:通过基因表达综合数据库(GEO)获取AD相关的数据集GSE186929,筛选AD患者外周血中差异表达的circRNAs,应用Circinteractome和miRDB数据库来预测circRNA靶向的miRNA,应用Starbase、miWalk、TargetScan8.0在线靶基因预测网站预测靶基因,利用jvenn获得靶基因合集,对差异表达的靶基因进行分析。运用David工具进行基因本体论(GO)和分析和京都基因与基因组百科全书(KEGG)通路分析。通过String在线网站构建蛋白互作(PPI)网络,应用Cytoscape筛选出3个关键基因。结果:共筛选出47个差异表达的circRNAs,其中13个下调,34个上调,选取最具有显著性差异的has_circRNA_0001928进一步预测miRNA,选取数据库中预测效果都较好的miR-142-5p进行靶基因预测,获得63个靶基因。GO和KEGG富集分析显示靶基因参与RNA转录、细胞分裂、基因表达调控等功能以及调节干细胞多能性的信号通路、脂质和动脉粥样硬化信号通路、人类巨细胞病毒感染等信号通路。3个关键基因为PUM2、OTUD4、RANBP2。结论:circRNA及其靶基因可能在AD的发病机制中发挥重要作用,circRNA可能是AD潜在的生物标志物和治疗靶点。
Objective: To investigate the biological functions of differentially expressed circular RNAs (circRNAs) in the peripheral blood of Alzheimer’s disease (AD) patients by bioinformatics methods. Methods: AD-related dataset GSE186929 was obtained from Gene Expression Omnibus (GEO), screening for differentially expressed circRNAs in the peripheral blood of AD patients, applying Circinteractome and miRDB databases to predict circRNA-targeted miRNAs, and applying Starbase, miWalk, TargetScan8.0 online target gene prediction website to predict target genes, and used jvenn to obtain target gene ensembles to analyze differentially expressed target genes. Gene ontology (GO) and analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed using David tools. Protein Interaction (PPI) network was constructed through String online website and Cytoscape was applied to screen three key genes. Results: A total of 47 differentially expressed circRNAs were screened, of which 13 were down-regulated and 34 were up-regulated. The most significantly different has_circRNA_0001928 was selected for further miRNA prediction, and the miR-142-5p, which had good prediction results in the database, was selected for target gene prediction, resulting in 63 target genes. GO and KEGG enrichment analyses showed that the target genes were involved in the functions of RNA transcription, cell division, and regulation of gene expression as well as the signaling pathways regulating stem cell pluripotency, lipid and atherosclerosis signaling pathways, and human cytomegalovirus infection, etc. The three key genes were PUM2, OTUD4, and RANBP2. Conclusions: CircRNAs and their target genes may play an important role in the pathogenesis of AD, and circRNAs may be potential biomarkers and therapeutic targets for AD.
[1] | Bhole, R.P., Chikhale, R.V. and Rathi, K.M. (2024) Current Biomarkers and Treatment Strategies in Alzheimer Disease: An Overview and Future Perspectives. IBRO Neuroscience Reports, 16, 8-42. https://doi.org/10.1016/j.ibneur.2023.11.003 |
[2] | Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C.E., et al. (2021) Alzheimer’s Disease. The Lancet, 397, 1577-1590. https://doi.org/10.1016/s0140-6736(20)32205-4 |
[3] | Dong, J., Zeng, Z., Huang, Y., Chen, C., Cheng, Z. and Zhu, Q. (2023) Challenges and Opportunities for circRNA Identification and Delivery. Critical Reviews in Biochemistry and Molecular Biology, 58, 19-35. https://doi.org/10.1080/10409238.2023.2185764 |
[4] | He, A.T., Liu, J., Li, F. and Yang, B.B. (2021) Targeting Circular RNAs as a Therapeutic Approach: Current Strategies and Challenges. Signal Transduction and Targeted Therapy, 6, Article No. 185. https://doi.org/10.1038/s41392-021-00569-5 |
[5] | Huang, J., Su, M. and Wu, D. (2020) Functional Roles of Circular RNAs in Alzheimer’s Disease. Ageing Research Reviews, 60, Article ID: 101058. https://doi.org/10.1016/j.arr.2020.101058 |
[6] | Dudekula, D.B., Panda, A.C., Grammatikakis, I., De, S., Abdelmohsen, K. and Gorospe, M. (2015) Circinteractome: A Web Tool for Exploring Circular RNAs and Their Interacting Proteins and microRNAs. RNA Biology, 13, 34-42. https://doi.org/10.1080/15476286.2015.1128065 |
[7] | Chen, Y. and Wang, X. (2019) Mirdb: An Online Database for Prediction of Functional microRNA Targets. Nucleic Acids Research, 48, D127-D131. https://doi.org/10.1093/nar/gkz757 |
[8] | Li, J., Liu, S., Zhou, H., Qu, L. and Yang, J. (2013) Starbase V2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA Interaction Networks from Large-Scale Clip-Seq Data. Nucleic Acids Research, 42, D92-D97. https://doi.org/10.1093/nar/gkt1248 |
[9] | McGeary, S.E., Lin, K.S., Shi, C.Y., Pham, T.M., Bisaria, N., Kelley, G.M., et al. (2019) The Biochemical Basis of microRNA Targeting Efficacy. Science, 366, eaav1741. https://doi.org/10.1126/science.aav1741 |
[10] | Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., et al. (2014) STRING V10: Protein-Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Research, 43, D447-D452. https://doi.org/10.1093/nar/gku1003 |
[11] | Mehta, S.L., Dempsey, R.J. and Vemuganti, R. (2020) Role of Circular RNAs in Brain Development and CNS Diseases. Progress in Neurobiology, 186, Article ID: 101746. https://doi.org/10.1016/j.pneurobio.2020.101746 |
[12] | Chen, L. and Shan, G. (2021) CircRNA in Cancer: Fundamental Mechanism and Clinical Potential. Cancer Letters, 505, 49-57. https://doi.org/10.1016/j.canlet.2021.02.004 |
[13] | Zhang, C., Han, X., Yang, L., Fu, J., Sun, C., Huang, S., et al. (2020) Circular RNA circPPM1F Modulates M1 Macrophage Activation and Pancreatic Islet Inflammation in Type 1 Diabetes Mellitus. Theranostics, 10, 10908-10924. https://doi.org/10.7150/thno.48264 |
[14] | Huang, S., Li, X., Zheng, H., Si, X., Li, B., Wei, G., et al. (2019) Loss of Super-Enhancer-Regulated circRNA Nfix Induces Cardiac Regeneration after Myocardial Infarction in Adult Mice. Circulation, 139, 2857-2876. https://doi.org/10.1161/circulationaha.118.038361 |
[15] | Ma, N., Zhang, W. and Wan, J. (2020) Research Progress on circRNA in Nervous System Diseases. Current Alzheimer Research, 17, 687-697. https://doi.org/10.2174/1567205017666201111114928 |
[16] | Mo, D., Li, X., Raabe, C.A., Rozhdestvensky, T.S., Skryabin, B.V. and Brosius, J. (2020) Circular RNA Encoded Amyloid Beta Peptides—A Novel Putative Player in Alzheimer’s Disease. Cells, 9, Article No. 2196. https://doi.org/10.3390/cells9102196 |
[17] | Yang, H., Wang, H., Shang, H., Chen, X., Yang, S., Qu, Y., et al. (2019) Circular RNA Circ_0000950 Promotes Neuron Apoptosis, Suppresses Neurite Outgrowth and Elevates Inflammatory Cytokines Levels via Directly Sponging Mir-103 in Alzheimer’s Disease. Cell Cycle, 18, 2197-2214. https://doi.org/10.1080/15384101.2019.1629773 |
[18] | Meng, S., Wang, B. and Li, W. (2022) CircAXL Knockdown Alleviates Aβ1-42-Induced Neurotoxicity in Alzheimer’s Disease via Repressing PDE4A by Releasing miR-1306-5p. Neurochemical Research, 47, 1707-1720. https://doi.org/10.1007/s11064-022-03563-7 |
[19] | Wu, L., Du, Q. and Wu, C. (2021) CircLPAR1/miR-212-3p/ZNF217 Feedback Loop Promotes Amyloid Β-Induced Neuronal Injury in Alzheimer’s Disease. Brain Research, 1770, Article ID: 147622. https://doi.org/10.1016/j.brainres.2021.147622 |
[20] | Huang, J., Xu, Z., Yang, S., Yu, C., Zhang, F., Qin, M., et al. (2018) Identification of Differentially Expressed Profiles of Alzheimer’s Disease Associated Circular RNAs in a Panax Notoginseng Saponins-Treated Alzheimer’s Disease Mouse Model. Computational and Structural Biotechnology Journal, 16, 523-531. https://doi.org/10.1016/j.csbj.2018.10.010 |
[21] | Huang, Z., Su, R., Qing, C., Peng, Y., Luo, Q. and Li, J. (2018) Plasma Circular RNAs Hsa_circ_0001953 and Hsa_circ_0009024 as Diagnostic Biomarkers for Active Tuberculosis. Frontiers in Microbiology, 9, Article No. 2010. https://doi.org/10.3389/fmicb.2018.02010 |
[22] | Yin, Y.D., Cao, D., Shen, H., et al. (2021) Differential circRNA Expression Profiles in Peripheral Blood Mononuclear Cells among Mild and Severe Influenza-Associated Pneumonia Patients. Chinese Medical Journal, 101, 573-578. http://dx.org/10.3760/cma.j.cn112137-20201007-02776 |
[23] | Hu, J., Ji, C., Hua, K., Wang, X., Deng, X., Li, J., et al. (2020) Hsa_circ_0091074 Regulates TAZ Expression via microRNA1297 in Triple Negative Breast Cancer Cells. International Journal of Oncology, 56, 1314-1326. https://doi.org/10.3892/ijo.2020.5000 |
[24] | Dong, X., Sun, H., Mao, J., et al. (2021) Differential Expression of Circular RNA in Patients with White Matter Hyperintensity and Cognitive Impairment. Journal of Central South University Medical Sciences, 46, 1080-1089. http://dx.org/10.11817/j.issn.1672-7347.2021.200692 |
[25] | Mody, P.H., Marvin, K.N., Hynds, D.L. and Hanson, L.K. (2023) Cytomegalovirus Infection Induces Alzheimer’s Disease-Associated Alterations in Tau. Journal of NeuroVirology, 29, 400-415. https://doi.org/10.1007/s13365-022-01109-9 |
[26] | Murray, E.R., Kemp, M. and Nguyen, T.T. (2022) The Microbiota-Gut-Brain Axis in Alzheimer’s Disease: A Review of Taxonomic Alterations and Potential Avenues for Interventions. Archives of Clinical Neuropsychology, 37, 595-607. https://doi.org/10.1093/arclin/acac008 |
[27] | Siemen, H., Colas, D., Heller, H.C., Brüstle, O. and Reijo Pera, R.A. (2011) Pumilio-2 Function in the Mouse Nervous System. PLOS ONE, 6, e25932. https://doi.org/10.1371/journal.pone.0025932 |
[28] | Vessey, J.P., Amadei, G., Burns, S.E., Kiebler, M.A., Kaplan, D.R. and Miller, F.D. (2012) An Asymmetrically Localized Staufen2-Dependent RNA Complex Regulates Maintenance of Mammalian Neural Stem Cells. Cell Stem Cell, 11, 517-528. https://doi.org/10.1016/j.stem.2012.06.010 |
[29] | Zhang, M., Chen, D., Xia, J., Han, W., Cui, X., Neuenkirchen, N., et al. (2017) Post-Transcriptional Regulation of Mouse Neurogenesis by Pumilio Proteins. Genes & Development, 31, 1354-1369. https://doi.org/10.1101/gad.298752.117 |
[30] | Schmidt, M.F., Gan, Z.Y., Komander, D. and Dewson, G. (2021) Ubiquitin Signalling in Neurodegeneration: Mechanisms and Therapeutic Opportunities. Cell Death & Differentiation, 28, 570-590. https://doi.org/10.1038/s41418-020-00706-7 |
[31] | Zhao, Y., Mudge, M.C., Soll, J.M., Rodrigues, R.B., Byrum, A.K., Schwarzkopf, E.A., et al. (2018) OTUD4 Is a Phospho-Activated K63 Deubiquitinase That Regulates MyD88-Dependent Signaling. Molecular Cell, 69, 505-516.e5. https://doi.org/10.1016/j.molcel.2018.01.009 |
[32] | Fodder, K., Murthy, M., Rizzu, P., Toomey, C.E., Hasan, R., Humphrey, J., et al. (2023) Brain DNA Methylomic Analysis of Frontotemporal Lobar Degeneration Reveals OTUD4 in Shared Dysregulated Signatures across Pathological Subtypes. Acta Neuropathologica, 146, 77-95. https://doi.org/10.1007/s00401-023-02583-z |
[33] | Joseph, J., Tan, S., Karpova, T.S., McNally, J.G. and Dasso, M. (2002) SUMO-1 Targets RanGAP1 to Kinetochores and Mitotic Spindles. The Journal of Cell Biology, 156, 595-602. https://doi.org/10.1083/jcb.200110109 |
[34] | Desgraupes, S., Etienne, L. and Arhel, N.J. (2023) RANBP2 Evolution and Human Disease. FEBS Letters, 597, 2519-2533. https://doi.org/10.1002/1873-3468.14749 |
[35] | Chen, Y., Chen, X., Luo, Z., Kang, X., Ge, Y., Wan, R., et al. (2024) Exercise-Induced Reduction of IGF1R Sumoylation Attenuates Neuroinflammation in APP/PS1 Transgenic Mice. Journal of Advanced Research. https://doi.org/10.1016/j.jare.2024.03.025 |