全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

血清sST2、FGF-23、GDF-15对阵发性房颤的预测价值探讨
Prognostic Value of Serum sST2, FGF-23 and GDF-15 in Paroxysmal Atrial Fibrillation

DOI: 10.12677/acm.2024.1492525, PP. 745-757

Keywords: 心房颤动,可溶性生长刺激基因表达蛋白2,成纤维细胞生长因-23,生长分化因子-15
Atrial Fibrillation
, Soluble Growth Stimulating Gene Expression Protein 2, Fibroblast Gowth Factor-23, Growth Differentiation Factor 15

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:检测阵发性心房颤动(Paroxysmal Atrial Fibrillation, PAF)患者与非心房颤动(Atrial Fibrillation, AF)患者血清可溶性生长刺激基因表达蛋白2 (Soluble Growth Stimulating Gene Expression Protein 2, sST2)、成纤维细胞生长因子-23 (Fibroblast Gowth Factor-23, FGF-23)、人生长分化因子15 (Growth differentiation factor 15, GDF-15)水平,探讨此三个因子对PAF的预测价值。方法:选取符合入排标准的PAF患者61例作为观察组,非AF患者61例作为对照组。应用酶联吸附免疫实验法(Enzyme linked immunosorbent assay, ELISA)测定两组患者血清sST2、FGF-23、GDF-15的浓度。比较两组患者的临床资料、血液学检测指标。采用Spearman相关性分析sST2、FGF-23、GDF-15与炎症指标及其与超声心动图各参数的相关性。采用单因素及多因素logistic回归分析PAF发生的相关因素。结果:与非AF组比较,PAF组血清sST2、FGF-23、GDF-15水平均明显升高(P < 0.05)。Spearman相关性分析显示,血清sST2与FGF-23呈正相关(r = 0.219, P = 0.015),sST2与GDF-15呈正相关(r = 0.211, P = 0.020),FGF-23与GDF-15呈正相关(r = 0.198, P = 0.028)。sST2与中性粒细胞呈正相关(r = 0.268, P = 0.003)、与NLR呈正相关(r = 0.265, P = 0.003),与白细胞、淋巴细胞无显著相关性;FGF-23、GDF-15与炎症指标均无显著相关性。sST2、FGF-23、GDF-15均与超声心动图各参数无显著相关性。单因素logistic回归分析显示,年龄、心率、舒张压、左房前后径、右房长径、右房横径、sST2、FGF-23、GDF-15、谷丙转氨酶、总胆红素、直接胆红素、肌酐、肾小球滤过率、高密度脂蛋白胆固醇(P < 0.05)是PAF的危险因素。多因素logistic回归分析显示,年龄(OR = 1.197, 95%CI 1.066~1.343, P = 0.002)、FGF-23 (OR = 1.006, 95%CI 1.002~1.011, P = 0.009)、GDF-15 (OR = 1.003, 95%CI 1.001~1.005, P < 0.001)、高密度脂蛋白胆固醇(OR = 19.136, 95%CI 1.050~348.601, P = 0.046)是PAF的独立危险因素。结论:1) PAF组血清sST2、FGF-23、GDF-15水平较非AF组明显升高,多因素logistic回归分析显示FGF-23、GDF-15是PAF的独立危险因素。2) 血清sST2、FGF-23、GDF-15浓度两两呈正相关性,sST2与中性粒细胞、NLR呈正相关性,提示炎症反应参与了PAF的发生发展。3) 血清sST2、FGF-23、GDF-15水平均与超声心动图参数无显著相关性,其与房颤发生的相关性可能独立于心脏结构改变之外。
Objective: To detect the levels of serum sST2, FGF-23 and GDF-15 in patients with PAF and without AF, and investigate the predictive value of these three factors on PAF. Methods: 61 patients with PAF who met the inclusion criteria were selected as the observation group, and 61 patients without AF were selected as the control group. Serum levels of sST2, FGF-23 and GDF-15 were determined by ELISA. The clinical data and hematological indicators of the two groups were compared. Spearman correlation analysis was used to analyze the correlation between sST2, FGF-23, GDF-15 and inflammatory indicators and echocardiographic parameters. The factors related to the occurrence of PAF were analyzed by univariate and multivariate logistic regression. Results: Compared with non-AF group, serum levels of sST2, FGF-23 and GDF-15 in PAF group were significantly increased (P < 0.05). Spearman correlation analysis showed that serum sST2 was positively correlated

References

[1]  Chung, M.K., Refaat, M., Shen, W., Kutyifa, V., Cha, Y., Di Biase, L., et al. (2020) Atrial Fibrillation. Journal of the American College of Cardiology, 75, 1689-1713.
https://doi.org/10.1016/j.jacc.2020.02.025
[2]  Andrade, J., Khairy, P., Dobrev, D. and Nattel, S. (2014) The Clinical Profile and Pathophysiology of Atrial Fibrillation. Circulation Research, 114, 1453-1468.
https://doi.org/10.1161/circresaha.114.303211
[3]  Li, C., Zhang, J., Hu, W. and Li, S. (2020) Atrial Fibrosis Underlying Atrial Fibrillation (review). International Journal of Molecular Medicine, 47, Article No. 9.
https://doi.org/10.3892/ijmm.2020.4842
[4]  Karam, B.S., Chavez-Moreno, A., Koh, W., Akar, J.G. and Akar, F.G. (2017) Oxidative Stress and Inflammation as Central Mediators of Atrial Fibrillation in Obesity and Diabetes. Cardiovascular Diabetology, 16, Article No. 120.
https://doi.org/10.1186/s12933-017-0604-9
[5]  Dudink, E.A. (2018) The Biomarkers NT-proBNP and CA-125 Are Elevated in Patients with Idiopathic Atrial Fibrillation. Journal of Atrial Fibrillation, 11, Article 2058.
https://doi.org/10.4022/jafib.2058
[6]  Aimo, A., Januzzi, J.L., Bayes-Genis, A., Vergaro, G., Sciarrone, P., Passino, C., et al. (2019) Clinical and Prognostic Significance of sST2 in Heart Failure. Journal of the American College of Cardiology, 74, 2193-2203.
https://doi.org/10.1016/j.jacc.2019.08.1039
[7]  Grabner, A., Amaral, A.P., Schramm, K., Singh, S., Sloan, A., Yanucil, C., et al. (2015) Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metabolism, 22, 1020-1032.
https://doi.org/10.1016/j.cmet.2015.09.002
[8]  Grabner, A., Schramm, K., Silswal, N., Hendrix, M., Yanucil, C., Czaya, B., et al. (2017) FGF23/FGFR4-Mediated Left Ventricular Hypertrophy Is Reversible. Scientific Reports, 7, Article No. 1993.
https://doi.org/10.1038/s41598-017-02068-6
[9]  Koller, L., Kleber, M.E., Brandenburg, V.M., Goliasch, G., Richter, B., Sulzgruber, P., et al. (2015) Fibroblast Growth Factor 23 Is an Independent and Specific Predictor of Mortality in Patients with Heart Failure and Reduced Ejection Fraction. Circulation: Heart Failure, 8, 1059-1067.
https://doi.org/10.1161/circheartfailure.115.002341
[10]  Arkoumani, M., Papadopoulou-Marketou, N., Nicolaides, N.C., Kanaka-Gantenbein, C., Tentolouris, N. and Papassotiriou, I. (2019) The Clinical Impact of Growth Differentiation Factor-15 in Heart Disease: A 2019 Update. Critical Reviews in Clinical Laboratory Sciences, 57, 114-125.
https://doi.org/10.1080/10408363.2019.1678565
[11]  Wollert, K.C. and Kempf, T. (2012) Growth Differentiation Factor 15 in Heart Failure: An Update. Current Heart Failure Reports, 9, 337-345.
https://doi.org/10.1007/s11897-012-0113-9
[12]  Staff, A.C., Bock, A.J., Becker, C., Kempf, T., Wollert, K.C. and Davidson, B. (2010) Growth Differentiation Factor-15 as a Prognostic Biomarker in Ovarian Cancer. Gynecologic Oncology, 118, 237-243.
https://doi.org/10.1016/j.ygyno.2010.05.032
[13]  Wallin, U., Glimelius, B., Jirström, K., Darmanis, S., Nong, R.Y., Pontén, F., et al. (2011) Growth Differentiation Factor 15: A Prognostic Marker for Recurrence in Colorectal Cancer. British Journal of Cancer, 104, 1619-1627.
https://doi.org/10.1038/bjc.2011.112
[14]  Baek, K.E., Yoon, S.R., Kim, J., Kim, K.S., Kang, S.H., Yang, Y., et al. (2009) Upregulation and Secretion of Macrophage Inhibitory Cytokine-1 (MIC-1) in Gastric Cancers. Clinica Chimica Acta, 401, 128-133.
https://doi.org/10.1016/j.cca.2008.12.008
[15]  Resl, M., Clodi, M., Vila, G., Luger, A., Neuhold, S., Wurm, R., et al. (2016) Targeted Multiple Biomarker Approach in Predicting Cardiovascular Events in Patients with Diabetes. Heart, 102, 1963-1968.
https://doi.org/10.1136/heartjnl-2015-308949
[16]  Pavo, N., Wurm, R., Neuhold, S., et al. (2016) GDF-15 Is Associated with Cancer Incidence in Patients with Type 2 Diabetes. Clinical Chemistry, 62, 1612-1620.
https://doi.org/10.1373/clinchem.2016.257212
[17]  Tuegel, C., Katz, R., Alam, M., Bhat, Z., Bellovich, K., de Boer, I., et al. (2018) GDF-15, Galectin 3, Soluble ST2, and Risk of Mortality and Cardiovascular Events in CKD. American Journal of Kidney Diseases, 72, 519-528.
https://doi.org/10.1053/j.ajkd.2018.03.025
[18]  姚超永, 陈宗灿. 非瓣膜性心房颤动患者血清胆红素的变化及意义[J]. 深圳中西医结合杂志, 2017, 27(20): 152-153.
[19]  Vianello, E., Dozio, E., Tacchini, L., et al. (2019) ST2/IL-33 Signaling in Cardiac Fibrosis. The International Journal of Biochemistry & Cell Biology, 116, 105619.
https://doi.org/10.1016/j.biocel.2019.105619
[20]  Ye, T., Zhang, C., Wu, G., Wan, W., Liang, J., Liu, X., et al. (2019) Pinocembrin Attenuates Autonomic Dysfunction and Atrial Fibrillation Susceptibility via Inhibition of the NF-κB/TNF-α Pathway in a Rat Model of Myocardial Infarction. International Immunopharmacology, 77, Article 105926.
https://doi.org/10.1016/j.intimp.2019.105926
[21]  Matilla, L., Arrieta, V., Jover, E., Garcia-Peña, A., Martinez-Martinez, E., Sadaba, R., et al. (2020) Soluble St2 Induces Cardiac Fibroblast Activation and Collagen Synthesis via Neuropilin-1. Cells, 9, Article 1667.
https://doi.org/10.3390/cells9071667
[22]  刘海洋, 刘虹. 成纤维生长因子23与慢性肾病不良预后的关系及治疗策略[J]. 中南大学学报(医学版), 2018, 43(5): 560-565.
[23]  Savas, O., Oktay, O., Murat, E., et al. (2016) The Relationship between FGF-23 and Ghrelin Levels in CKD Patients: Preliminary Data. The Italian Journal of Urology and Nephrology, 68, 227-232.
[24]  Moe, S.M., Chertow, G.M., Parfrey, P.S., Kubo, Y., Block, G.A., Correa-Rotter, R., et al. (2015) Cinacalcet, Fibroblast Growth Factor-23, and Cardiovascular Disease in Hemodialysis. Circulation, 132, 27-39.
https://doi.org/10.1161/circulationaha.114.013876
[25]  Olauson, H., Qureshi, A.R., Miyamoto, T., Barany, P., Heimburger, O., Lindholm, B., et al. (2010) Relation between Serum Fibroblast Growth Factor-23 Level and Mortality in Incident Dialysis Patients: Are Gender and Cardiovascular Disease Confounding the Relationship? Nephrology Dialysis Transplantation, 25, 3033-3038.
https://doi.org/10.1093/ndt/gfq191
[26]  Faul, C., Amaral, A.P., Oskouei, B., Hu, M., Sloan, A., Isakova, T., et al. (2011) FGF23 Induces Left Ventricular Hypertrophy. Journal of Clinical Investigation, 121, 4393-4408.
https://doi.org/10.1172/jci46122
[27]  Wischhusen, J., Melero, I. and Fridman, W.H. (2020) Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Frontiers in Immunology, 11, Article 951.
https://doi.org/10.3389/fimmu.2020.00951
[28]  Heger, J., Schiegnitz, E., von Waldthausen, D., Anwar, M.M., Piper, H.M. and Euler, G. (2010) Growth Differentiation Factor 15 Acts Anti-Apoptotic and Pro-Hypertrophic in Adult Cardiomyocytes. Journal of Cellular Physiology, 224, 120-126.
https://doi.org/10.1002/jcp.22102
[29]  Lamprea-Montealegre, J.A., Zelnick, L.R., Shlipak, M.G., Floyd, J.S., Anderson, A.H., He, J., et al. (2019) Cardiac Biomarkers and Risk of Atrial Fibrillation in Chronic Kidney Disease: The CRIC Study. Journal of the American Heart Association, 8, e012200.
https://doi.org/10.1161/jaha.119.012200
[30]  吴英乐, 程帅锋, 陈润, 等. 血清胆红素水平和房颤的关系[J]. 河南科技大学学报(医学版), 2019, 37(3): 201-204.
[31]  温昌霖, 张忠良, 王国华. 孤立性房颤与心脏结构功能相关性研究[J]. 实用诊断与治疗杂志, 2007, 21(6): 436-437+440.
[32]  Xie, E., Yu, R., Ambale-Venkatesh, B., Bakhshi, H., Heckbert, S.R., Soliman, E.Z., et al. (2020) Association of Right Atrial Structure with Incident Atrial Fibrillation: A Longitudinal Cohort Cardiovascular Magnetic Resonance Study from the Multi-Ethnic Study of Atherosclerosis (MESA). Journal of Cardiovascular Magnetic Resonance, 22, 36.
https://doi.org/10.1186/s12968-020-00631-1
[33]  Hasebe, H., Yoshida, K., Iida, M., Hatano, N., Muramatsu, T. and Aonuma, K. (2016) Right-to-Left Frequency Gradient during Atrial Fibrillation Initiated by Right Atrial Ectopies and Its Augmentation by Adenosine Triphosphate: Implications of Right Atrial Fibrillation. Heart Rhythm, 13, 354-363.
https://doi.org/10.1016/j.hrthm.2015.09.030
[34]  富丽娟, 赵晓静, 胡微, 等. 心房颤动患者血清sST-2、apelin、NT-proBNP、炎症因子浓度与左心房内径的关系[J]. 岭南心血管病杂志, 2019, 25(5): 530-535.
[35]  邢文, 赵春梅, 王德国. 血清成纤维细胞生长因子23与慢性心力衰竭心室重构的相关性[J]. 临床心血管病杂志, 2016, 32(1): 36-39.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133