|
可注射水凝胶再生修复退变髓核的研究进展
|
Abstract:
目的:可注射水凝胶再生修复退变髓核的研究进展进行综述。方法:广泛查阅近年来国内外相关研究文献,对不同类型可注射水凝胶用于髓核再生修复研究进展进行总结。结果:可注射水凝胶在机械性能、组织相容性、微创置入及负载生物活性物质等方面具有优势,目前关于可注射水凝胶在髓核再生修复的临床研究也取得了较好的结果,但其临床转化还需解决机械强度匹配、水凝胶泄露移位的问题。结论:可注射水凝胶的特性可以实现水凝胶的微创化置入,在成分和结构上模拟原生髓核组织,恢复髓核微环境和生物力学功能,同时可以作为生物活性物质的载体促进髓核再生,在髓核修复领域具有广阔的应用场景。
Objective: To review the research progress of injectable hydrogel for regeneration and repair of degenerated nucleus pulposus. Methods: The related research literature at home and abroad in recent years was extensively reviewed, and the research progress of different types of injectable hydrogels for nucleus pulposus regeneration and repair was summarized. Results: Injectable hydrogel has advantages in mechanical properties, histocompatibility, minimally invasive implantation and loading of bioactive substances. At present, the clinical research of injectable hydrogel in the regeneration and repair of nucleus pulposus has also achieved good results, but its clinical transformation still needs to solve the problems of mechanical strength matching, hydrogel leakage and displacement. Conclusion: The characteristics of injectable hydrogel can realize the minimally invasive implantation of hydrogel, simulate the original nucleus pulposus tissue in composition and structure, restore the microenvironment and biomechanical function of nucleus pulposus, and can be used as a carrier of bioactive substances to promote the regeneration of nucleus pulposus, which has a broad application scenario in the field of nucleus pulposus repair.
[1] | Cieza, A., Causey, K., Kamenov, K., Hanson, S.W., Chatterji, S. and Vos, T. (2020) Global Estimates of the Need for Rehabilitation Based on the Global Burden of Disease Study 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet, 396, 2006-2017. https://doi.org/10.1016/s0140-6736(20)32340-0 |
[2] | Murray, C.J.L. and Lopez, A.D. (2013) Measuring the Global Burden of Disease. New England Journal of Medicine, 369, 448-457. https://doi.org/10.1056/nejmra1201534 |
[3] | Deyo, R.A. and Weinstein, J.N. (2001) Low Back Pain. New England Journal of Medicine, 344, 363-370. https://doi.org/10.1056/nejm200102013440508 |
[4] | Bowles, R.D. and Setton, L.A. (2017) Biomaterials for Intervertebral Disc Regeneration and Repair. Biomaterials, 129, 54-67. https://doi.org/10.1016/j.biomaterials.2017.03.013 |
[5] | Sampara, P., Banala, R.R., Vemuri, S.K., Av, G.R. and Gpv, S. (2018) Understanding the Molecular Biology of Intervertebral Disc Degeneration and Potential Gene Therapy Strategies for Regeneration: A Review. Gene Therapy, 25, 67-82. https://doi.org/10.1038/s41434-018-0004-0 |
[6] | Xia, C., Zeng, Z., Fang, B., Tao, M., Gu, C., Zheng, L., et al. (2019) Mesenchymal Stem Cell-Derived Exosomes Ameliorate Intervertebral Disc Degeneration via Anti-Oxidant and Anti-Inflammatory Effects. Free Radical Biology and Medicine, 143, 1-15. https://doi.org/10.1016/j.freeradbiomed.2019.07.026 |
[7] | Zhu, M., Tan, J., Liu, L., Tian, J., Li, L., Luo, B., et al. (2021) Construction of Biomimetic Artificial Intervertebral Disc Scaffold via 3D Printing and Electrospinning. Materials Science and Engineering: C, 128, Article ID: 112310. https://doi.org/10.1016/j.msec.2021.112310 |
[8] | Wang, F., Nan, L., Zhou, S., Liu, Y., Wang, Z., Wang, J., et al. (2019) Injectable Hydrogel Combined with Nucleus Pulposus-Derived Mesenchymal Stem Cells for the Treatment of Degenerative Intervertebral Disc in Rats. Stem Cells International, 2019, Article ID: 8496025. https://doi.org/10.1155/2019/8496025 |
[9] | Malandrino, A., Lacroix, D., Hellmich, C., Ito, K., Ferguson, S.J. and Noailly, J. (2014) The Role of Endplate Poromechanical Properties on the Nutrient Availability in the Intervertebral Disc. Osteoarthritis and Cartilage, 22, 1053-1060. https://doi.org/10.1016/j.joca.2014.05.005 |
[10] | Rodriguez, A.G., Slichter, C.K., Acosta, F.L., Rodriguez-Soto, A.E., Burghardt, A.J., Majumdar, S., et al. (2011) Human Disc Nucleus Properties and Vertebral Endplate Permeability. Spine, 36, 512-520. https://doi.org/10.1097/brs.0b013e3181f72b94 |
[11] | Roughley, P.J. (2004) Biology of Intervertebral Disc Aging and Degeneration: Involvement of the Extracellular Matrix. Spine, 29, 2691-2699. https://doi.org/10.1097/01.brs.0000146101.53784.b1 |
[12] | Melrose, J., Ghosh, P. and Taylor, T.K.F. (2001) A Comparative Analysis of the Differential Spatial and Temporal Distributions of the Large (Aggrecan, Versican) and Small (Decorin, Biglycan, Fibromodulin) Proteoglycans of the Intervertebral Disc. Journal of Anatomy, 198, 3-15. https://doi.org/10.1046/j.1469-7580.2001.19810003.x |
[13] | Sztrolovics, R., Alini, M., Mort, J.S. and Roughley, P.J. (1999) Age-Related Changes in Fibromodulin and Lumican in Human Intervertebral Discs. Spine, 24, 1765. https://doi.org/10.1097/00007632-199909010-00003 |
[14] | Schultz, A., Andersson, G., Ortengren, R., Haderspeck, K. and Nachemson, A. (1982) Loads on the Lumbar Spine. Validation of a Biomechanical Analysis by Measurements of Intradiscal Pressures and Myoelectric Signals. The Journal of Bone & Joint Surgery, 64, 713-720. https://doi.org/10.2106/00004623-198264050-00008 |
[15] | Adams, M.A., McNally, D.S. and Dolan, P. (1996) “Stress” Distributions Inside Intervertebral Discs. The Effects of Age and Degeneration. The Journal of Bone and Joint Surgery, 78, 965-972. https://doi.org/10.1302/0301-620x78b6.1287 |
[16] | Chrastil, J. and Patel, A.A. (2012) Complications Associated with Posterior and Transforaminal Lumbar Interbody Fusion. Journal of the American Academy of Orthopaedic Surgeons, 20, 283-291. https://doi.org/10.5435/jaaos-20-05-283 |
[17] | Zeng, Y., Chen, C., Liu, W., Fu, Q., Han, Z., Li, Y., et al. (2015) Injectable Microcryogels Reinforced Alginate Encapsulation of Mesenchymal Stromal Cells for Leak-Proof Delivery and Alleviation of Canine Disc Degeneration. Biomaterials, 59, 53-65. https://doi.org/10.1016/j.biomaterials.2015.04.029 |
[18] | Aderibigbe, B. and Buyana, B. (2018) Alginate in Wound Dressings. Pharmaceutics, 10, Article No. 42. https://doi.org/10.3390/pharmaceutics10020042 |
[19] | Liang, Y., Zhao, X., Hu, T., Han, Y. and Guo, B. (2019) Mussel-Inspired, Antibacterial, Conductive, Antioxidant, Injectable Composite Hydrogel Wound Dressing to Promote the Regeneration of Infected Skin. Journal of Colloid and Interface Science, 556, 514-528. https://doi.org/10.1016/j.jcis.2019.08.083 |
[20] | Mekhail, M., Daoud, J., Almazan, G. and Tabrizian, M. (2013) Rapid, Guanosine 5’‐Diphosphate‐Induced, Gelation of Chitosan Sponges as Novel Injectable Scaffolds for Soft Tissue Engineering and Drug Delivery Applications. Advanced Healthcare Materials, 2, 1126-1130. https://doi.org/10.1002/adhm.201200371 |
[21] | Alexander, A., Ajazuddin, Khan, J., Saraf, S. and Saraf, S. (2014) Polyethylene Glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) Based Thermosensitive Injectable Hydrogels for Biomedical Applications. European Journal of Pharmaceutics and Biopharmaceutics, 88, 575-585. https://doi.org/10.1016/j.ejpb.2014.07.005 |
[22] | Chen, P., Ning, L., Qiu, P., Mo, J., Mei, S., Xia, C., et al. (2019) Photo‐Crosslinked Gelatin‐Hyaluronic Acid Methacrylate Hydrogel‐Committed Nucleus Pulposus‐Like Differentiation of Adipose Stromal Cells for Intervertebral Disc Repair. Journal of Tissue Engineering and Regenerative Medicine, 13, 682-693. https://doi.org/10.1002/term.2841 |
[23] | Alimirzaei, F., Vasheghani-Farahani, E., Ghiaseddin, A., et al. (2017) pH-Sensitive Chitosan Hydrogel with Instant Gelation for Myocardial Regeneration. Journal of Tissue Science & Engineering, 8, Article ID: 1000212. https://doi.org/10.4172/2157-7552.1000212 |
[24] | Chen, W., Chen, H., Zheng, D., Zhang, H., Deng, L., Cui, W., et al. (2019) Gene‐Hydrogel Microenvironment Regulates Extracellular Matrix Metabolism Balance in Nucleus Pulposus. Advanced Science, 7, Article ID: 1902099. https://doi.org/10.1002/advs.201902099 |
[25] | Hu, J., Chen, B., Guo, F., Du, J., Gu, P., Lin, X., et al. (2012) Injectable Silk Fibroin/Polyurethane Composite Hydrogel for Nucleus Pulposus Replacement. Journal of Materials Science: Materials in Medicine, 23, 711-722. https://doi.org/10.1007/s10856-011-4533-y |
[26] | Sivan, S.S., Roberts, S., Urban, J.P.G., Menage, J., Bramhill, J., Campbell, D., et al. (2014) Injectable Hydrogels with High Fixed Charge Density and Swelling Pressure for Nucleus Pulposus Repair: Biomimetic Glycosaminoglycan Analogues. Acta Biomaterialia, 10, 1124-1133. https://doi.org/10.1016/j.actbio.2013.11.010 |
[27] | Gan, Y., Li, P., Wang, L., Mo, X., Song, L., Xu, Y., et al. (2017) An Interpenetrating Network-Strengthened and Toughened Hydrogel That Supports Cell-Based Nucleus Pulposus Regeneration. Biomaterials, 136, 12-28. https://doi.org/10.1016/j.biomaterials.2017.05.017 |
[28] | Maroudas, A., Stockwell, R.A., Nachemson, A., et al. (1975) Factors Involved in the Nutrition of the Human Lumbar Intervertebral Disc: Cellularity and Diffusion of Glucose in Vitro. Journal of Anatomy, 120, 113-130. |
[29] | Boubriak, O.A., Watson, N., Sivan, S.S., Stubbens, N. and Urban, J.P.G. (2013) Factors Regulating Viable Cell Density in the Intervertebral Disc: Blood Supply in Relation to Disc Height. Journal of Anatomy, 222, 341-348. https://doi.org/10.1111/joa.12022 |
[30] | del Rosario, C., Rodríguez-Évora, M., Reyes, R., Delgado, A. and Évora, C. (2015) BMP-2, PDGF-BB, and Bone Marrow Mesenchymal Cells in a Macroporous β-TCP Scaffold for Critical-Size Bone Defect Repair in Rats. Biomedical Materials, 10, Article ID: 045008. https://doi.org/10.1088/1748-6041/10/4/045008 |
[31] | Cui, P., Pan, P., Qin, L., Wang, X., Chen, X., Deng, Y., et al. (2023) Nanoengineered Hydrogels as 3D Biomimetic Extracellular Matrix with Injectable and Sustained Delivery Capability for Cartilage Regeneration. Bioactive Materials, 19, 487-498. https://doi.org/10.1016/j.bioactmat.2022.03.032 |
[32] | Growney, E.A., Linder, H.R., Garg, K., Bledsoe, J.G. and Sell, S.A. (2019) Bio‐Conjugation of Platelet‐Rich Plasma and Alginate through Carbodiimide Chemistry for Injectable Hydrogel Therapies. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108, 1972-1984. https://doi.org/10.1002/jbm.b.34538 |
[33] | Pan, Z., Sun, H., Xie, B., Xia, D., Zhang, X., Yu, D., et al. (2018) Therapeutic Effects of Gefitinib-Encapsulated Thermosensitive Injectable Hydrogel in Intervertebral Disc Degeneration. Biomaterials, 160, 56-68. https://doi.org/10.1016/j.biomaterials.2018.01.016 |