全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Variation in Yellow Root Cassava (Manihot esculentus Crantz) Genotypes and Phenotypic Relationship for Selected Postharvest and Morphological Traits

DOI: 10.4236/as.2024.159053, PP. 993-1008

Keywords: Cassava, Variability, Regression, Correlation, Postharvest and Morphological Traits

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study evaluated the variation in yellow root cassava (Manihot esculentus Crantz) genotypes and phenotypic relationship for selected postharvest and morphological traits. The trial was established at the Njala Agricultural Research Centre experimental site, Njala, during 2017/2018 cropping season in a randomized complete block design with three replications. Findings showed that the higher the total carotene content (TCC) in yellow flesh cassava genotypes, the longer the rate of postharvest physiological deterioration (PPD). Genotypes TR-0051-TCC/17 and TR-0012-TCC/17 recorded higher TCC (18.9 μg/g and 13.6 μg/g) and longer rate of PPD (4.29 and 3.14), respectively. Genotypes TR-0051-TCC/17, TR-0016-TCC/17, TR-0028-TCC/17, TR-0012-TCC/17 and TR-0020-TCC/17 had the highest TCC values of 18.9 μg/g, 16.09 μg/g, 14.72 μg/g, 13.6 μg/g and 11.23 μg/g with corresponding higher color chart values of 6, 6, 6, 5, and 6, respectively. This suggests the direct dependence of TCC on the root parenchyma color intensity in yellow flesh cassava genotypes. Findings also show a direct relationship between morphological and postharvest traits in yellow flesh cassava genotypes that could be exploited for the genetic improvement of cassava for increased shelf life, nutrition and related quality traits, as well as conservation and utilization of the crop.

References

[1]  Food and Agriculture Organisation (FAO) (2008) Facts and Figures.
[2]  Owolade, O.F., Dixon, A.G.O. and Adeoti, A.Y.A. (2006) Diallel Analysis of Cassava Genotypes to Anthracnose Disease. World Journal of Agricultural Sciences, 2, 98-104.
[3]  Sesay, J.V., Lebbie, A., Wadsworth, R., Nuwamanya, E., Bado, S. and Norman, P.E. (2023) Genetic Structure and Diversity Study of Cassava (Manihot esculenta) Germplasm for African Cassava Mosaic Disease and Fresh Storage Root Yield. Open Journal of Genetics, 13, 23-47.
https://doi.org/10.4236/ojgen.2023.131002
[4]  Jansz, E.R. and Uluwaduge, I. (1997) Biochemical Aspects of Cassava (Manihot esculenta Crantz) with Special Emphasis on Cyanogenic Glucosides—A Review. Journal of the National Science Foundation of Sri Lanka, 25, 1-24.
https://doi.org/10.4038/jnsfsr.v25i1.5015
[5]  Adebayo, W.G. (2023) Cassava Production in Africa: A Panel Analysis of the Drivers and Trends. Heliyon, 9, e19939.
https://doi.org/10.1016/j.heliyon.2023.e19939
[6]  Nassar, N.M.A., Elkholy, H. and Eltantawy, A. (2002) Cassava Productivity World-wide: An Overview. CERES, 248, 369-681.
[7]  Chávez, A.L., Sánchez, T., Jaramillo, G., Bedoya, J.M., Echeverry, J., Bolaños, E.A., et al. (2005) Variation of Quality Traits in Cassava Roots Evaluated in Landraces and Improved Clones. Euphytica, 143, 125-133.
https://doi.org/10.1007/s10681-005-3057-2
[8]  FAO and IFAD (2000) The World Cassava Economy: Facts, Trends and Outlook. Food & Agriculture Organisation.
[9]  Adebayo, W.G., and Silberberger, M. (2020) Poverty Reduction in Nigeria: Can Improving and the CASSAVA value Chain Help? In: Osabuohien, E.S., Ed., The Palgrave Handbook of Agricultural and Rural Development in Africa, Palgrave Macmillan.
[10]  Kawano, K. (2003) Thirty Years of Cassava Breeding for Productivity—Biological and Social Factors for Success. Crop Science, 43, 1325-1335.
https://doi.org/10.2135/cropsci2003.1325
[11]  Ntawuruhunga, P., Ssemakula, G., Ojulong, H., Bua, A., Ragama, P., Kanobe, C. and Whyte, J. (2006) Evaluation of Advanced Cassava Genotypes in Uganda. African Crop Science Journal, 14, 17-25.
[12]  Katz, S.H. and Weaver, W.W. (2003) Encyclopedia of Food and Culture. Scribner.
[13]  Morgan, N.K. and Choct, M. (2016) Cassava: Nutrient Composition and Nutritive Value in Poultry Diets. Animal Nutrition, 2, 253-261.
https://doi.org/10.1016/j.aninu.2016.08.010
[14]  Abass, A.B., Awoyale, W., Alenkhe, B., Malu, N., Asiru, B.W., Manyong, V., et al. (2016) Can Food Technology Innovation Change the Status of a Food Security Crop? A Review of Cassava Transformation into “Bread” in Africa. Food Reviews International, 34, 87-102.
https://doi.org/10.1080/87559129.2016.1239207
[15]  Odoemelam, C.S., Percival, B., Ahmad, Z., Chang, M., Scholey, D., Burton, E., et al. (2020) Characterization of Yellow Root Cassava and Food Products: Investigation of Cyanide and β-Carotene Concentrations. BMC Research Notes, 13, Article No. 333.
https://doi.org/10.1186/s13104-020-05175-2
[16]  Alexis, S.D. and Jean, N.G. (2010) Effect of Technological Treatments on Cassava (Manihot Esculenta Crantz) Composition. Food and Nutrition Sciences, 1, 19-23.
https://doi.org/10.4236/fns.2010.11004
[17]  Ilona, P. (2017) Vitamin a Cassava in Nigeria: Crop Development and Delivery. African Journal of Food, Agriculture, Nutrition and Development, 17, 12000-12025.
https://doi.org/10.18697/ajfand.78.harvestplus09
[18]  Sánchez, T., Chávez, A., Ceballos, H., Rodriguez‐Amaya, D., Nestel, P. and Ishitani, M. (2005) Reduction or Delay of Post‐Harvest Physiological Deterioration in Cassava Roots with Higher Carotenoid Content. Journal of the Science of Food and Agriculture, 86, 634-639.
https://doi.org/10.1002/jsfa.2371
[19]  Rodriguez-Amaya, D.B. and Kimura, M. (2004) HarvestPlus Handbook for Carote-noid Analysis. IFPRI/CIAT.
[20]  Sánchez, T., Chávez, A., Ceballos, H., Rodriguez‐Amaya, D., Nestel, P. and Ishitani, M. (2005) Reduction or Delay of Post‐Harvest Physiological Deterioration in Cassava Roots with Higher Carotenoid Content. Journal of the Science of Food and Agriculture, 86, 634-639.
https://doi.org/10.1002/jsfa.2371
[21]  Djabou, A.S.M., Ewane, H.P.K., Eyamo, V.J.E., Ketchiemo, F.T., Figueiredo, P.G., Niemenak, N., et al. (2023) Influence of Harvest Periods on Cassava (Manihot esculenta Crantz) Agronomic Traits and Physiological Response to Post-Harvest Physiological Deterioration. American Journal of Plant Sciences, 14, 89-103.
https://doi.org/10.4236/ajps.2023.141007
[22]  Ukpabi, U.J. and Ekeledo, E.N. (2009) Feasibility of Using Orange Fleshed Sweet Po-tato as an Alternative to Carrot in Nigerian Salad Preparations. Agricultural Journal, 4, 216-220.
[23]  Nestel, P., Bouis, H.E., Meenakshi, J. and Pfeiffer, W. (2006) Biofortification of Staple Food Crops. The Journal of Nutrition, 136, 1064-1067.
https://doi.org/10.1093/jn/136.4.1064
[24]  Prempeh, R., Manu-Aduening, J.A., Asante, B.O., Asante, I.K., Offei, S.K. and Danquah, E.Y. (2017) Farmers’ Knowledge and Perception of Postharvest Physiological Deterioration in Cassava Storage Roots in Ghana. Agriculture & Food Security, 6, Article No. 27.
https://doi.org/10.1186/s40066-017-0103-y
[25]  Reilly, K., Han, Y., Tohme, J. and Beeching, J.R. (2001) Isolation and Characterisation of a Cassava Catalase Expressed during Post-Harvest Physiological Deterioration. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1518, 317-323.
https://doi.org/10.1016/s0167-4781(01)00195-6
[26]  Waisundara, V.Y. (2018) Introductory Chapter: Cassava as a Staple Food., InTech.
https://doi.org/10.5772/intechopen.70324
[27]  Morante, N., Sánchez, T., Ceballos, H., Calle, F., Pérez, J.C., Egesi, C., et al. (2010) Tolerance to Postharvest Physiological Deterioration in Cassava Roots. Crop Science, 50, 1333-1338.
https://doi.org/10.2135/cropsci2009.11.0666
[28]  Harris, K.P., Martin, A., Novak, Kim, S.H, Reynolds, T., and Anderson, C.L. (2015) Cassava Bacterial Blight and Postharvest Physiological Deterioration Production Loss-es and Control Strategies. EPAR Brief No. 298, 34.
[29]  Wheatley, C. and Gómez, G. (1985) Evaluation of Some Quality Characteristics in Cassava Storage Roots. Plant Foods for Human Nutrition, 35, 121-129.
https://doi.org/10.1007/bf01092127
[30]  Iyer, S., Mattinson, D.S. and Fellman, J.K. (2010) Study of the Early Events Leading to Cassava Root Postharvest Deterioration. Tropical Plant Biology, 3, 151-165.
https://doi.org/10.1007/s12042-010-9052-3
[31]  Njoku, D.N., Amadi, C.O., Mbe, J. and Amanze, N.J. (2007) Strategies to Overcome Post-Harvest Physiological Deterioration in Cassava (Manihot esculenta) Root: A Review. 51-62.
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=
https://www.ajol.info/index.php/naj/article/view/110068/99801&ved=2ahUKEwiR0v3stYGIAxVHRKQEHZE_NhwQFnoECCwQAQ&usg=AOvVaw0Aua094iRaz3ifr1g8Ymqm
[32]  Ravi, V., Aked, J. and Balagopalan, C. (1996) Review on Tropical Root and Tuber Crops I. Storage Methods and Quality Changes. Critical Reviews in Food Science and Nutrition, 36, 661-709.
https://doi.org/10.1080/10408399609527744
[33]  Aristizabal, J. and Sanchez, T. (2007) Technical Guide for the Production and Analysis of Cassava Starch. Bulletin of Agriculture Services of the FAO 130 Rome Italy, 134.
[34]  van Oirschot, Q.E., O’Brien, G.M., Dufour, D., El-Sharkawy, M.A. and Mesa, E. (2000) The Effect of Pre-Harvest Pruning of Cassava Upon Root Deterioration and Quality Characteristics. Journal of the Science of Food and Agriculture, 80, 1866-1873.
https://doi.org/10.1002/1097-0010(200010)80:13<1866::aid-jsfa718>3.0.co;2-h
[35]  World Health Organization (1995) Global Prevalence of Vitamin A Deficiency (MDIS Working Paper No. 2. WHO/NUT/95.3).
[36]  La Frano, M.R., Woodhouse, L.R., Burnett, D.J. and Burri, B.J. (2013) Biofortified Cassava Increases β-Carotene and Vitamin a Concentrations in the Tag-Rich Plasma Layer of American Women. British Journal of Nutrition, 110, 310-320.
https://doi.org/10.1017/s0007114512005004
[37]  Nassar, N. (2007) Cassava Genetic Resources and Their Utilization for Breeding of the Crop. Genetics and Molecular Research, 6, 1151-1168.
[38]  Nassar, N. and Ortiz, R. (2010) Breeding Cassava to Feed the Poor. Scientific American, 302, 78-84.
https://doi.org/10.1038/scientificamerican0510-78
[39]  Fukuda, W.M.G., Guevara, C.L., Kawuki, R. and Ferguson, M.E. (2010) Selected Morphological and Agronomic Descriptors for the Characterization of Cassava. Interna-tional Institute of Tropical Agriculture (IITA), Ibadan, 19.
[40]  Salcedo, A., Del Valle, A., Sanchez, B., Ocasio, V., Ortiz, A., Marquez, P. and Siri-tunga, D. (2010) Comparative Evaluation of Physiological Post-Harvest Root Deterioration of 25 Cassava (Manihot esculenta) Accessions: Visual vs. Hydroxycoumarins Fluorescent Accumulation Analysis. African Journal of Agricultural Research, 5, 3138-3144.
[41]  SAS Institute Incorporated (2013) SAS for Windows 9.4. SAS Institute Inc.
[42]  Steel, R.G.D., and Torrie, J.H. (1980) Principles and Procedures of Statistics: A Bio-metrical Approach. 2nd Edition, McGraw-Hill Publishing Company, 481.
[43]  Chávez, A., Sánchez, T., Ceballos, H., Rodriguez‐Amaya, D., Nestel, P., Tohme, J., et al. (2006) Retention of Carotenoids in Cassava Roots Submitted to Different Processing Methods. Journal of the Science of Food and Agriculture, 87, 388-393.
https://doi.org/10.1002/jsfa.2704
[44]  Howe, J.A., Maziya-Dixon, B. and Tanumihardjo, S.A. (2009) Cassava with Enhanced β-Carotene Maintains Adequate Vitamin A Status in Mongolian Gerbils (Meriones unguiculatus) Despite Substantial cis-Isomer Content. British Journal of Nutrition, 102, 342-349.
https://doi.org/10.1017/s0007114508184720
[45]  Graham, R.D. and Rosser, J.M. (2000) Carotenoids in Staple Foods: Their Potential to Improve Human Nutrition. Food and Nutrition Bulletin, 21, 404-409.
https://doi.org/10.1177/156482650002100412
[46]  Hess, S.Y., Thurnham, D.I., and Hurrell, R.F. (2005) Influence of Provitamin a Ca-rotenoids on Iron, Zinc, and Vitamin A Status. HarvestPlus Technical Monograph 6. International Food Policy Research Institute (IFPRI) and International Center for Tropical Agriculture (CIAT).
[47]  Carvalho, L.J., Agustini, M.A., Anderson, J.V., Vieira, E.A., de Souza, C.R., Chen, S., et al. (2016) Natural Variation in Expression of Genes Associated with Carotenoid Biosynthesis and Accumulation in Cassava (Manihot esculenta Crantz) Storage Root. BMC Plant Biology, 16, Article No. 133.
https://doi.org/10.1186/s12870-016-0826-0
[48]  Njoku, D.N., Egesi, C.N., Gracen, V.E., Offei, S.K., Asante, I.K. and Danquah, E.Y. (2014) Identification of Pro-Vitamin a Cassava (Manihot esculenta Crantz) Varieties for Adaptation and Adoption through Participatory Research. Journal of Crop Improvement, 28, 361-376.
https://doi.org/10.1080/15427528.2014.888694
[49]  Welsch, R., Arango, J., Bär, C., Salazar, B., Al-Babili, S., Beltrán, J., et al. (2010) Provitamin a Accumulation in Cassava (Manihot esculenta) Roots Driven by a Single Nucleotide Polymorphism in a Phytoene Synthase Gene. The Plant Cell, 22, 3348-3356.
https://doi.org/10.1105/tpc.110.077560
[50]  Failla, M.L., Chitchumroonchokchai, C., Siritunga, D., De Moura, F.F., Fregene, M., Manary, M.J., et al. (2012) Retention during Processing and Bioaccessibility of β-Carotene in High β-Carotene Transgenic Cassava Root. Journal of Agricultural and Food Chemistry, 60, 3861-3866.
https://doi.org/10.1021/jf204958w
[51]  Beyene, G., Solomon, F.R., Chauhan, R.D., Gaitán‐Solis, E., Narayanan, N., Gehan, J., et al. (2017) Provitamin a Biofortification of Cassava Enhances Shelf Life but Reduces Dry Matter Content of Storage Roots Due to Altered Carbon Partitioning into Starch. Plant Biotechnology Journal, 16, 1186-1200.
https://doi.org/10.1111/pbi.12862
[52]  Reilly, K., Góomez-Váasquez, R., Buschmann, H., Tohme, J. and Beeching, J.R. (2004) Oxidative Stress Responses during Cassava Post-Harvest Physiological Deterioration. Plant Molecular Biology, 56, 625-641.
https://doi.org/10.1007/s11103-005-2271-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133