|
基于3D点云的列车螺栓故障诊断方法
|
Abstract:
城市轨道交通作为一种城市内交通运输方式,因其快速高效、低碳环保、运力强大等优点得到了国家产业政策的大力支持,近几年来,我国城市轨道交通发展迅速、列车速度不断提高,其安全问题愈发重要。列车长时间的运行,由于震动、碰撞、老化等问题,列车底部的紧固螺栓会出现松动、甚至掉落丢失的情况,存在发生重大安全事故的风险。而现阶段采取的人工巡检的方法存在效率低、漏检多、标准不一等诸多限制。为了避免造成人员伤亡和财产损失,亟需研究出一种快速、准确的螺栓故障检测方法。本文采用智能列检机器人采集列车车底螺栓图像,合成点云数据,通过ICP算法与模版数据点云配准、RANSAC平面分割消除异常点,计算螺栓表面点云的数量与平面距离判断列车车底螺栓是否正常,实验表明,该方法可以有效的识别出列车车底螺栓丢失和3 mm以上松动故障,真实故障识别率为100%。对减少人工成本、排除列车安全隐患、保障人民生命财产安全具有重要意义。
Urban rail transit, as an intra-city transportation mode, has been strongly supported by the national industrial policy due to its advantages of high speed, high efficiency, low carbon and environmental protection, and strong transportation capacity. Its security issues are becoming more and more important. When the train runs for a long time, due to vibration, collision, aging and other problems, the fastening bolts at the bottom of the train will be loose, or even lost, and there is a risk of major safety accidents. However, the manual inspection method adopted at this stage has many limitations, such as low efficiency, many missed inspections, and different standards. In order to avoid casualties and property losses, it is urgent to develop a fast and accurate bolt fault detection method. In this paper, the intelligent train inspection robot is used to collect the images of the bolts on the bottom of the train, synthesize the point cloud data, and use the ICP algorithm to register the point cloud with the template data, RANSAC plane segmentation to eliminate abnormal points, and calculate the number of point clouds on the bolt surface and the plane distance to judge the train bottom. Whether the bolts are normal or not, the experiment shows that this method can effectively identify the loss of the bolts on the bottom of the train and the loose faults of more than 3mm, and the real fault recognition rate is 100%. It is of great significance to reduce labor costs, eliminate hidden dangers of train safety, and ensure the safety of people’s lives and properties.
[1] | 朱开勇. 城市轨道交通车辆转向架轴承故障诊断相关问题分析[J]. 住宅与房地产, 2016(15): 247. |
[2] | 罗远. 地铁车辆故障管理与智能化维修研究[J]. 中国设备工程, 2021(14): 66-68. |
[3] | 陈燕, 郭锋. TFDS系统心盘螺栓丢失故障的自动识别检测技术[J]. 郑州轻工业学院学报: 自然科学版. 2010, 25(3): 90-94. |
[4] | 费垚东, 李柏林, 范宏. TFDS中螺栓故障的自动识别算法研究[J]. 机械设计与制造, 2021, 368(10): 97-101. |
[5] | 冯泽阳, 邬平波. 基于SVM的转向架故障诊断技术研究[J]. 机械, 2020, 47(8): 37-43. |
[6] | 彭丹, 周航. 基于轨边图像SURF特征的动车底部件异常检测算法[J]. 信息系统工程, 2016(2): 127-128. |
[7] | 吴应永. 基于SIFT的火车车底螺栓图像识别技术研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2016. |
[8] | 卢海林. 基于2D-3D图像信息融合的列车车底中心鞘螺栓故障检测方法[D]: [硕士学位论文]. 北京: 北京交通大学, 2021. |
[9] | 任胜杰. 基于卷积神经网络的螺栓松动故障诊断研究[D]: [硕士学位论文]. 西安: 西安理工大学, 2021. |
[10] | Besl, P.J. and McKay, N.D. (1992) A Method for Registration of 3-D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239-256. https://doi.org/10.1109/34.121791 |
[11] | 孔利, 王延存, 周茂伦, 等. 基于随机抽样与特征值法的点云平面稳健拟合方法[J]. 测绘与空间地理信息, 2019, 42(3): 43-46. |
[12] | 李希, 韩燮, 熊风光. 基于RANSAC 和TLS的点云平面拟合[J]. 计算机工程与设计, 2017, 38(1): 123-126, 143. |