全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种地对空红外弱小目标自主发现设备
A Ground-to-Air Infrared Small and Small Target Autonomous Detection Equipment

DOI: 10.12677/airr.2024.133059, PP. 571-581

Keywords: 目标识别,红外弱小目标,密集嵌套交互模块,便携式设备
Target Recognition
, Infrared Dim Small Target, Densely Nested Interaction Modules, Portable Equipment

Full-Text   Cite this paper   Add to My Lib

Abstract:

在军事作战领域中,准确的目标识别是确保诸如预警系统、拦截导弹、侦察装备及远程打击武器等各类军事资产能够充分发挥其战术与战略效能的核心要素。然而,在复杂背景的干扰下,通过雷达侦测、光电侦测、电磁频谱侦测等常规侦测手段已经难以满足现代战场环境下对于导弹、无人机等小目标的预警监测需求。本文针对当前战场环境中无人机等弱小空中目标监测与识别的紧迫需求,设计了一种地对空红外弱小目标自主发现设备。设备由电源模块、图像采集模块、嵌入式算法处理模块、显示模块、嵌入式算法处理模块组成,成本低廉、小巧轻便、便携性强。同时,设备引入最新的DNA-Net模型来进行红外小目标识别。鉴于传统侦测手段如雷达、光电及电磁侦测在便携性、隐蔽性上的局限,以及难以满足复杂环境中的实时监测挑战,本研究聚焦于利用红外成像技术与深度学习算法的结合,以提高弱小目标的发现能力。
In the field of military operations, accurate target identification is a core element to ensure that military assets such as early warning systems, interceptor missiles, reconnaissance equipment and long-range strike weapons can achieve their full tactical and strategic effectiveness. However, under the interference of complex background, conventional detection methods such as radar detection, photoelectric detection and electromagnetic spectrum detection have been difficult to meet the needs of early warning and monitoring of small targets such as missiles and UAVs in modern battlefield environment. Aiming at the urgent need of monitoring and recognition of small and small targets such as unmanned aerial vehicles (UAVs) in the current battlefield environment, this paper designs a surface-to-air infrared small and small targets autonomous detection equipment. The device is composed of power module, image acquisition module, embedded algorithm processing module, display module and embedded algorithm processing module, with low cost, compact and portable. At the same time, the device introduces the latest DNA-Net model for infrared small target recognition. In view of the limitations of traditional detection methods such as radar, photoelectric and electromagnetic detection in portability and concealability, as well as the difficulty in meeting the challenges of real-time monitoring in complex environments, this research focuses on the combination of infrared imaging technology and deep learning algorithm to improve the detection ability of dim targets.

References

[1]  林晓林. 基于机器学习的小目标检测与追踪的算法研究[D]: [硕士学位论文]. 无锡: 江南大学, 2018.
[2]  Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., et al. (2017) Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 3296-3297.
https://doi.org/10.1109/cvpr.2017.351
[3]  Liu, Y., Sun, P., Wergeles, N. and Shang, Y. (2021) A Survey and Performance Evaluation of Deep Learning Methods for Small Object Detection. Expert Systems with Applications, 172, Article 114602.
https://doi.org/10.1016/j.eswa.2021.114602
[4]  Li, B., Xiao, C., Wang, L., Wang, Y., Lin, Z., Li, M., et al. (2022) Dense Nested Attention Network for Infrared Small Target Detection. IEEE Transactions on Image Processing, 32, 1745-1758.
https://doi.org/10.1109/TIP.2022.3199107
[5]  方路平, 何杭江, 周国民. 目标检测算法研究综述[J]. 计算机工程与应用, 2018, 54(13): 11-18, 33.
[6]  Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., et al. (2019) Deep Learning for Generic Object Detection: A Survey. International Journal of Computer Vision, 128, 261-318.
https://doi.org/10.1007/s11263-019-01247-4
[7]  张晓敏. 天空背景下红外小目标检测与跟踪算法研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2018.
[8]  Huang, L., Dai, S., Huang, T., Huang, X. and Wang, H. (2021) Infrared Small Target Segmentation with Multiscale Feature Representation. Infrared Physics & Technology, 116, Article 103755.
https://doi.org/10.1016/j.infrared.2021.103755
[9]  Wang, H., Li, H., Zhou, H. and Chen, X. (2021) Low-Altitude Infrared Small Target Detection Based on Fully Convolutional Regression Network and Graph Matching. Infrared Physics & Technology, 115, Article 103738.
https://doi.org/10.1016/j.infrared.2021.103738
[10]  王宇翔, 韩振铎, 王宏敏. 基于多向差异度的红外弱小目标检测算法[J]. 红外技术, 2012, 34(6): 351-355.
[11]  Xu, S., Zhang, H., He, X., Cao, X. and Hu, J. (2022) Oil Tank Detection with Improved EfficientDet Model. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
https://doi.org/10.1109/lgrs.2022.3183350
[12]  Du, J., Lu, H., Zhang, L., Hu, M., Chen, S., Deng, Y., et al. (2022) A Spatial-Temporal Feature-Based Detection Framework for Infrared Dim Small Target. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-12.
https://doi.org/10.1109/tgrs.2021.3117131
[13]  Dai, Y., Wu, Y., Zhou, F. and Barnard, K. (2021) Attentional Local Contrast Networks for Infrared Small Target Detection. IEEE Transactions on Geoscience and Remote Sensing, 59, 9813-9824.
https://doi.org/10.1109/tgrs.2020.3044958
[14]  刘华凯. 复杂云层背景下的空中红外小目标检测算法研究[D]: [硕士学位论文]. 北京: 北京工业大学, 2018.
[15]  Wang, C., Bochkovskiy, A. and Liao, H.M. (2021) Scaled-YOLOv4: Scaling Cross Stage Partial Network. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 20-25 June 2021, 13024-13033.
https://doi.org/10.1109/cvpr46437.2021.01283
[16]  杨慧, 张宝辉, 沙涛, 等. 地空背景下红外弱小运动目标检测[J]. 红外技术, 2018, 40(5): 462-467.
[17]  Masood, A., Sheng, B., Yang, P., Li, P., Li, H., Kim, J., et al. (2020) Automated Decision Support System for Lung Cancer Detection and Classification via Enhanced RFCN with Multilayer Fusion RPN. IEEE Transactions on Industrial Informatics, 16, 7791-7801.
https://doi.org/10.1109/tii.2020.2972918
[18]  Gao, Z., Dai, J. and Xie, C. (2019) Dim and Small Target Detection Based on Feature Mapping Neural Networks. Journal of Visual Communication and Image Representation, 62, 206-216.
https://doi.org/10.1016/j.jvcir.2019.05.013
[19]  Shi, M. and Wang, H. (2019) Infrared Dim and Small Target Detection Based on Denoising Autoencoder Network. Mobile Networks and Applications, 25, 1469-1483.
https://doi.org/10.1007/s11036-019-01377-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133