全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

融合项目直接关联实体传播的IEP-CKAN推荐方法
IEP-CKAN Recommendation Method Integrating Item Directly Related Entity Propagation

DOI: 10.12677/airr.2024.133057, PP. 550-564

Keywords: 推荐算法,知识图谱,注意力机制,无序编码器,嵌入优化
Recommendation Algorithm
, Knowledge Graph, Attention Mechanism, Unordered Encoder, Embedded Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

面向推荐系统的协同知识感知注意网络(Collaborative Knowledge-Aware Attentive Network for Recommender Systems,简称CKAN)没有优化与项目直接关联实体的嵌入表示,且没有考虑不同传播层次的重要性以及用户点击物品间的关联信息,使推荐实体不够准确。因此,提出一种融合项目直接关联实体传播的推荐算法(Items are Directly Associated with Entity Propagation - Collaborative Knowledge-aware Attentive Network for Recommender Systems,简称IEP-CKAN),在IEP-CKAN中将优化与项目直接关联实体的嵌入表示,并融入Ripple Net模型思想在利用波纹集信息时给予靠近中心节点的层次信息更大或更小的权重,再通过无序编码器挖掘用户点击物品间的关联信息,最终计算出推荐结果。实验结果表明,与CKAN相比该方法在Last. FM数据集上将AUC和F1的值提高了1.1%和1.3%,在Book-Crossing数据集上将AUC和F1的值提高了0.9%和1.0%,证明该方法能够进一步提高推荐模型的性能。
The Collaborative Knowledge-aware Attentive Network for Recommender Systems (CKAN) does not optimize the embedded representation of entities directly associated with the project. Moreover, the importance of different communication levels and the correlation information between items clicked by users are not considered, so the recommended entity is not accurate enough. Therefore, This paper proposes a recommendation algorithm (Items are Directly Associated with Entity Propagation - Collaborative Knowledge-aware Attentive) Network for Recommender Systems (IEP-CKAN for short) puts the embedded representation of entities directly related to the optimization project in IEP-CKAN, and incorporates the idea of Ripple Net model to give a greater or smaller weight to the hierarchical information near the central node when making use of the information of the ripple set. Then through the disordered encoder mining the user clicks between the items of the association information, the final calculation of the recommendation result. The experimental results show that compared with CKAN, the proposed method increases the values of AUC and F1 by 1.1% and 1.3 % in Last. FM dataset and 0.9% and 1.0% in Book-Crossing dataset, which proves that the proposed method can further improve the performance of the recommended model.

References

[1]  刘华玲, 马俊, 张国祥. 基于深度学习的内容推荐算法研究综述[J]. 计算机工程, 2021, 47(7): 1-12.
[2]  王俊淑, 张国明, 胡斌. 基于深度学习的推荐算法研究综述[J]. 南京师范大学学报(工程技术版), 2018, 18(4): 33-43.
[3]  Vaswani, A., Shazeer, N., Parmar, N., et al. (2017) Attention Is All You Need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, MIT Press, Long Beach, 6000-6010.
[4]  Chen, Q., Zhao, H., Li, W., Huang, P. and Ou, W. (2019) Behavior Sequence Transformer for E-Commerce Recommendation in Alibaba. Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data, Anchorage, 5 August 2019, 1-4.
https://doi.org/10.1145/3326937.3341261
[5]  Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., et al. (2019) BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer. Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, 3-7 November 2019, 1441-1450.
https://doi.org/10.1145/3357384.3357895
[6]  凤丽洲, 杨阳, 王友卫, 等. 基于Transformer和知识图谱的新闻推荐新方法[J]. 浙江大学学报(工学版), 2023, 57(1): 133-143.
[7]  王明虎, 石智奎, 苏佳, 等. 基于RoBERTa和图增强Transformer的序列推荐方法[J]. 计算机工程, 2024, 50(4): 121-131.
[8]  程开原, 姚俊萍, 李晓军, 等. 时态网络中知识图谱推荐: 关键技术与研究进展[J]. 中国电子科学研究院学报, 2021, 16(2): 174-183.
[9]  罗承天, 叶霞. 基于知识图谱的推荐算法研究综述[J]. 计算机工程与应用, 2023, 59(1): 49-60.
[10]  Bordes, A., Usunier, N., Garcia-Duran, A., et al. (2013) Translating Embeddings for Modeling Multi-Relational Data. In: Advances in Neural Information Processing Systems, MIT Press, Vancouver, 2787-2795.
[11]  Wang, Z., Zhang, J., Feng, J. and Chen, Z. (2014) Knowledge Graph Embedding by Translating on Hyperplanes. Proceedings of the AAAI Conference on Artificial Intelligence, 28, 1112-1119.
https://doi.org/10.1609/aaai.v28i1.8870
[12]  Lin, Y., Liu, Z., Sun, M., Liu, Y. and Zhu, X. (2015) Learning Entity and Relation Embeddings for Knowledge Graph Completion. Proceedings of the AAAI Conference on Artificial Intelligence, 29, 2181-2187.
https://doi.org/10.1609/aaai.v29i1.9491
[13]  Ji, G., He, S., Xu, L., Liu, K. and Zhao, J. (2015) Knowledge Graph Embedding via Dynamic Mapping Matrix. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Volume 1, 687-696.
https://doi.org/10.3115/v1/p15-1067
[14]  Zhang, F., Yuan, N.J., Lian, D., Xie, X. and Ma, W. (2016) Collaborative Knowledge Base Embedding for Recommender Systems. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 353-362.
https://doi.org/10.1145/2939672.2939673
[15]  Yu, X., Ren, X., Gu, Q., et al. (2013) Collaborative Filtering with Entity Similarity Regularization in Heterogeneous Information Networks. Proceedings of IJCAI-HINA, Beijing, 3-9 August 2013, 1-6.
[16]  Sun, Z., Yang, J., Zhang, J., Bozzon, A., Huang, L. and Xu, C. (2018) Recurrent Knowledge Graph Embedding for Effective Recommendation. Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, 2 October 2018, 297-305.
https://doi.org/10.1145/3240323.3240361
[17]  Wang, Z., Lin, G., Tan, H., Chen, Q. and Liu, X. (2020) CKAN: Collaborative Knowledge-Aware Attentive Network for Recommender Systems. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 25-30 July 2020, 219-228.
https://doi.org/10.1145/3397271.3401141
[18]  Wang, H., Zhang, F., Wang, J., Zhao, M., Li, W., Xie, X., et al. (2018) RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems. Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, 22-26 October 2018, 417-426.
https://doi.org/10.1145/3269206.3271739
[19]  Wang, H., Zhao, M., Xie, X., Li, W. and Guo, M. (2019) Knowledge Graph Convolutional Networks for Recommender Systems. The World Wide Web Conference, San Francisco, 13-17 May 2019, 3307-3313.
https://doi.org/10.1145/3308558.3313417
[20]  Wang, H., Zhang, F., Zhang, M., Leskovec, J., Zhao, M., Li, W., et al. (2019) Knowledge-Aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, 4-8 August 2019, 968-977.
https://doi.org/10.1145/3292500.3330836
[21]  Wang, X., He, X., Cao, Y., Liu, M. and Chua, T. (2019) KGAT. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, 4-8 August 2019, 950-958.
https://doi.org/10.1145/3292500.3330989

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133