|
生成式人工智能数据获取风险与规制路径
|
Abstract:
生成式人工智能技术的应用对于社会发展和技术进步具有重大作用,但与此同时,由于技术限制、缺少具体应用规范等产生诸多风险。在生成式人工智能技术的运行中,数据获取是其基础也是风险源头,因数据来源多样,收集数据缺少明确的授权容易产生违规风险;不实信息、价值观偏差、文化单一等产生收集数据质量风险;海量数据传输过程中产生数据泄漏风险。为了防范、应对生成式人工智能数据收集引发的数据风险,应当确立从细化人工智能立法、到明确数据收集阶段各参与主体的职责、再到强化行政监管的风险规制路径。
The application of Generative Artificial Intelligence (GAI) technology plays a significant role in the development of society and technological progress, but at the same time, it generates many risks due to technological limitations and lack of specific application specifications. In the operation of generative artificial intelligence technology, data collection is the basis and source of risk, due to the variety of data sources, the lack of clear authorization to collect data is prone to violation of the risk; inaccurate information, value bias, cultural singularity and so on, resulting in the quality of the collected data risk; data leakage risk in the process of massive data transmission. In order to prevent and cope with the data risks caused by generative AI data collection, a risk regulation path should be established from refining AI legislation, to clarifying the responsibilities of each participant in the data collection stage, to strengthening administrative supervision.
[1] | 郭小东. 生成式人工智能的风险及其包容性法律治理[J]. 北京理工大学学(社会科学版), 2023, 25(6): 93-105. |
[2] | 商建刚. 生成式人工智能风险治理元规则研究[J]. 东方法学, 2023(3): 4-17. |
[3] | 刘城霞, 段瑞雪. 数据结构与算法: Java版[M]. 北京: 北京理工大学出版社, 2022: 6-7. |
[4] | 康骁. 行政法如何应对生成式人工智能——基于算法、训练数据和内容的考察[J]. 云南社会科学, 2024, 4(4): 80-88. |
[5] | 高泽晋. 潘多拉的魔盒: 人工智能训练数据的来源、使用与治理——面向100位AI开发者的扎根研究[J]. 新闻记者, 2022(1): 86-96. |
[6] | 禹卫华. 生成式人工智能数据原生风险与媒介体系性规范[J]. 中国出版, 2023(10): 10-16. |
[7] | 刘艳红. 生成式人工智能的三大安全风险及法律规制——以ChatGPT为例[J]. 东方法学, 2023(4): 39-43. |
[8] | Carlini, A., et al. (2023) Italy’s ChatGTP Ban Attracts EU Privacy Regulators. https://www.reuters.com/technology/germany-principle-could-block-chat-gpt-if-needed-data-protection-chief-2023-04-03/ |
[9] | OPC Launches Investigate (2023) Office of the Privacy Commissioner of Canada. https://www.priv.gc.ca/en/opc-news/news-and-announcements/2023/an_230404/ |
[10] | 王选辉, 马玉萱. 多地法院曾引“最高法意见”判案, 最高法裁定书: 没出台过[EB/OL]. https://www.thepaper.cn/newsDetail_forward_8505409, 2020-07-31. |
[11] | 孟令宇. 从算法偏见到算法歧视:算法歧视的责任问题探究[J]. 东北师范大学(社会科学版). 2022, 01: 1-9. |
[12] | 毕文轩. 生成式人工智能的风险规制困境及其化解: 以ChatGPT的规制为视角[J]. 比较法研究, 2023(3): 155-172. |
[13] | 张凌寒. 生成式人工智能的法律定位与分层治理[J]. 现代法学, 2023, 45(4): 126-141. |
[14] | The European Union (2024) Artificial Intelligence Act. https://www.ey.com/content/dam/ey-unified-site/ey-com/en-gl/services/ai/documents/ey-eu-ai-act-political-agreement-overview-february-2024.pdf |
[15] | 毛逸潇. 数据保护合规体系研究[J]. 国家检察官学院学报, 2022, 30(2): 84-100. |
[16] | 郭春镇. 生成式AI的融贯性法律治理: 以生成式预训练模型(GPT)为例[J]. 现代法学, 2023, 45(3): 88-107. |
[17] | 张欣. 生成式人工智能的算法治理挑战与治理型监管[J]. 现代法学, 2023, 45(3): 108-123. |
[18] | 姚志伟, 李卓霖. 生成式人工智能内容风险的法律规制[J]. 西安交通大学学报(社会科学版), 2023, 43(5): 147-160. |
[19] | The Information Commissioner’s Office (2023) Sandbox Assessment Criteria Indicators https://ico.org.uk/media/for-organi-sations/documents/2618128/sandbox-criteria-indicators.pdf |
[20] | 市场监管总局, 工业和信息化部, 交通运输部, 应急部, 海关总署. 关于试行汽车安全沙盒监管制度的通告[EB/OL]. https://www.gov.cn/zhengce/zhengceku/2022-04/02/content_5683112.htm, 2022-02-25. |