|
影响糖尿病认知功能相关因素的研究进展
|
Abstract:
糖尿病是一种严重威胁人类健康的疾病,其并发症的研究也越来越受到关注,其中糖尿病认知功能障碍(Diabetes cognitive impairment, DCI)是糖尿病非常重要的并发症之一。认知功能障碍的发病机制复杂,且尚未完全阐明,可能与胰岛素抵抗与缺乏、血糖控制不佳、血管疾病、炎症和心理因素等相关。这些因素可导致认知速度减慢、反应时间延长、神经退行性变、脑老化和痴呆等。
Diabetes is a serious threat to human health, and the study of its complications is also getting more and more attention. Among them, diabetes cognitive impairment (DCI) is one of the most important complications of diabetes. The pathogenesis of cognitive impairment is complex and not fully understood, and may be related to insulin resistance and deficiency, poor blood sugar control, vascular diseases, inflammation, and psychological factors. These factors can lead to cognitive slowdown, prolonged reaction time, neurodegeneration, brain aging, and dementia.
[1] | Bozoki, A., Giordani, B., Heidebrink, J.L., Berent, S. and Foster, N.L. (2001) Mild Cognitive Impairments Predict Dementia in Nondemented Elderly Patients with Memory Loss. Archives of Neurology, 58, 411-416. https://doi.org/10.1001/archneur.58.3.411 |
[2] | Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G. and Kokmen, E. (1999) Mild Cognitive Impairment. Archives of Neurology, 56, 303-308. https://doi.org/10.1001/archneur.56.3.303 |
[3] | Stewart, R. and Liolitsa, D. (1999) Type 2 Diabetes Mellitus, Cognitive Impairment and Dementia. Diabetic Medicine, 16, 93-112. https://doi.org/10.1046/j.1464-5491.1999.00027.x |
[4] | Reske-Nielsen, E., Lundbæk, K. and Rafaelsen, O.J. (1966) Pathological Changes in the Central and Peripheral Nervous System of Young Long-Term Diabetics. Diabetologia, 1, 233-241. https://doi.org/10.1007/bf01257917 |
[5] | Biessels, G.J., Deary, I.J. and Ryan, C.M. (2008) Cognition and Diabetes: A Lifespan Perspective. The Lancet Neurology, 7, 184-190. https://doi.org/10.1016/s1474-4422(08)70021-8 |
[6] | 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华内分泌代谢杂志, 2021, 37(4): 311-398. |
[7] | Kodl, C.T., Franc, D.T., Rao, J.P., Anderson, F.S., Thomas, W., Mueller, B.A., et al. (2008) Diffusion Tensor Imaging Identifies Deficits in White Matter Microstructure in Subjects with Type 1 Diabetes That Correlate with Reduced Neurocognitive Function. Diabetes, 57, 3083-3089. https://doi.org/10.2337/db08-0724 |
[8] | 李敏, 张丽. 老年2型糖尿病与轻度认知功能障碍的关系研究[J]. 中国全科医学, 2011, 14(5B): 1537-1539. |
[9] | 杨礼, 秦琴保. 老年高干人群轻度认知功能障碍调查及危险因素分析[J]. 中国神经精神疾病杂志, 2011, 37(8): 473-476. |
[10] | Nasreddine, Z.S., Phillips, N.A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., et al. (2005) The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. Journal of the American Geriatrics Society, 53, 695-699. https://doi.org/10.1111/j.1532-5415.2005.53221.x |
[11] | 金肖青, 许瑛. 失智症长期照护[M]. 北京: 人民卫生出版社, 2019. |
[12] | 林露, 刘礼斌. 低血糖对糖尿病患者认知功能障碍影响的研究新进展[J]. 中华内分泌代谢杂志, 2021, 37(5): 485, 488. |
[13] | Hirabayashi, N., Hata, J., Furuta, Y., Ohara, T., Shibata, M., Hirakawa, Y., et al. (2022) Association between Diabetes and Gray Matter Atrophy Patterns in a General Older Japanese Population: The Hisayama Study. Diabetes Care, 45, 1364-1371. https://doi.org/10.2337/dc21-1911 |
[14] | Hughes, T.M., Ryan, C.M., Aizenstein, H.J., Nunley, K., Gianaros, P.J., Miller, R., et al. (2013) Frontal Gray Matter Atrophy in Middle Aged Adults with Type 1 Diabetes Is Independent of Cardiovascular Risk Factors and Diabetes Complications. Journal of Diabetes and its Complications, 27, 558-564. https://doi.org/10.1016/j.jdiacomp.2013.07.001 |
[15] | Marzelli, M.J., Mazaika, P.K., Barnea-Goraly, N., Hershey, T., Tsalikian, E., Tamborlane, W., et al. (2013) Neuroanatomical Correlates of Dysglycemia in Young Children with Type 1 Diabetes. Diabetes, 63, 343-353. https://doi.org/10.2337/db13-0179 |
[16] | van Duinkerken, E., Schoonheim, M.M., Sanz-Arigita, E.J., IJzerman, R.G., Moll, A.C., Snoek, F.J., et al. (2012) Resting-State Brain Networks in Type 1 Diabetic Patients with and without Microangiopathy and Their Relation to Cognitive Functions and Disease Variables. Diabetes, 61, 1814-1821. https://doi.org/10.2337/db11-1358 |
[17] | Biessels, G.J. (2005) Increased Cortical Atrophy in Patients with Alzheimer's Disease and Type 2 Diabetes Mellitus. Journal of Neurology, Neurosurgery & Psychiatry, 77, 304-307. https://doi.org/10.1136/jnnp.2005.069583 |
[18] | Moran, C., Phan, T.G., Chen, J., Blizzard, L., Beare, R., Venn, A., et al. (2013) Brain Atrophy in Type 2 Diabetes. Diabetes Care, 36, 4036-4042. https://doi.org/10.2337/dc13-0143 |
[19] | Milne, N.T., Bucks, R.S., Davis, W.A., Davis, T.M.E., Pierson, R., Starkstein, S.E., et al. (2017) Hippocampal Atrophy, Asymmetry, and Cognition in Type 2 Diabetes Mellitus. Brain and Behavior, 8, e00741. https://doi.org/10.1002/brb3.741 |
[20] | Arnold, S.E., Arvanitakis, Z., Macauley-Rambach, S.L., Koenig, A.M., Wang, H., Ahima, R.S., et al. (2018) Brain Insulin Resistance in Type 2 Diabetes and Alzheimer Disease: Concepts and Conundrums. Nature Reviews Neurology, 14, 168-181. https://doi.org/10.1038/nrneurol.2017.185 |
[21] | Tumminia, A., Vinciguerra, F., Parisi, M. and Frittitta, L. (2018) Type 2 Diabetes Mellitus and Alzheimer’s Disease: Role of Insulin Signalling and Therapeutic Implications. International Journal of Molecular Sciences, 19, Article 3306. https://doi.org/10.3390/ijms19113306 |
[22] | Gray, S.M. and Barrett, E.J. (2018) Insulin Transport into the Brain. American Journal of Physiology-Cell Physiology, 315, C125-C136. https://doi.org/10.1152/ajpcell.00240.2017 |
[23] | Werner, H. and LeRoith, D. (2014) Insulin and Insulin-Like Growth Factor Receptors in the Brain: Physiological and Pathological Aspects. European Neuropsychopharmacology, 24, 1947-1953. https://doi.org/10.1016/j.euroneuro.2014.01.020 |
[24] | de la Monte, S.M. (2012) Metabolic Derangements Mediate Cognitive Impairment and Alzheimer’s Disease: Role of Peripheral Insulin Resistance Diseases. Panminerva Medica, 54, 171-178. |
[25] | Heni, M., Schöpfer, P., Peter, A., Sartorius, T., Fritsche, A., Synofzik, M., et al. (2013) Evidence for Altered Transport of Insulin across the Blood-Brain Barrier in Insulin-Resistant Humans. Acta Diabetologica, 51, 679-681. https://doi.org/10.1007/s00592-013-0546-y |
[26] | Yaffe, K. (2013) Association between Hypoglycemia and Dementia in a Biracial Cohort of Older Adults with Diabetes Mellitus. JAMA Internal Medicine, 173, 1300-1306. https://doi.org/10.1001/jamainternmed.2013.6176 |
[27] | Chen, Y., Liu, Z., Yu, Y., Yao, E., Liu, X. and Liu, L. (2017) Effect of Recurrent Severe Hypoglycemia on Cognitive Performance in Adult Patients with Diabetes: A Meta-Analysis. Current Medical Science, 37, 642-648. https://doi.org/10.1007/s11596-017-1784-y |
[28] | Freedman, B.I., Sink, K.M., Hugenschmidt, C.E., Hughes, T.M., Williamson, J.D., Whitlow, C.T., et al. (2017) Associations of Early Kidney Disease with Brain Magnetic Resonance Imaging and Cognitive Function in African Americans with Type 2 Diabetes Mellitus. American Journal of Kidney Diseases, 70, 627-637. https://doi.org/10.1053/j.ajkd.2017.05.006 |
[29] | Tahmi, M., Palta, P. and Luchsinger, J.A. (2021) Metabolic Syndrome and Cognitive Function. Current Cardiology Reports, 23, Article No. 180. https://doi.org/10.1007/s11886-021-01615-y |
[30] | Whitmer, R.A., Gilsanz, P., Quesenberry, C.P., Karter, A.J. and Lacy, M.E. (2021) Association of Type 1 Diabetes and Hypoglycemic and Hyperglycemic Events and Risk of Dementia. Neurology, 97, e275-e283. https://doi.org/10.1212/wnl.0000000000012243 |
[31] | Rizzo, M.R., Marfella, R., Barbieri, M., Boccardi, V., Vestini, F., Lettieri, B., et al. (2010) Relationships between Daily Acute Glucose Fluctuations and Cognitive Performance among Aged Type 2 Diabetic Patients. Diabetes Care, 33, 2169-2174. https://doi.org/10.2337/dc10-0389 |
[32] | Zhong, Y., Zhang, X.Y., Miao, Y., et al. (2012) The Relationship between Glucose Excursion and Cognitive Function in Aged Type 2 Diabetes Patients. Biomedical and Environmental Sciences, 25, 1-7. https://doi.org/10.3967/0895-3988.2012.01.001 |
[33] | Quagliaro, L., Piconi, L., Assaloni, R., Martinelli, L., Motz, E. and Ceriello, A. (2003) Intermittent High Glucose Enhances Apoptosis Related to Oxidative Stress in Human Umbilical Vein Endothelial Cells. Diabetes, 52, 2795-2804. https://doi.org/10.2337/diabetes.52.11.2795 |
[34] | Ceriello, A., Esposito, K., Piconi, L., Ihnat, M.A., Thorpe, J.E., Testa, R., et al. (2008) Oscillating Glucose Is More Deleterious to Endothelial Function and Oxidative Stress than Mean Glucose in Normal and Type 2 Diabetic Patients. Diabetes, 57, 1349-1354. https://doi.org/10.2337/db08-0063 |
[35] | Bragd, J., Adamson, U., Bäcklund, L.B., Lins, P.E., Moberg, E. and Oskarsson, P. (2008) Can Glycaemic Variability, as Calculated from Blood Glucose Self-Monitoring, Predict the Development of Complications in Type 1 Diabetes over a Decade? Diabetes & Metabolism, 34, 612-616. https://doi.org/10.1016/j.diabet.2008.04.005 |
[36] | Maciejczyk, M., Żebrowska, E. and Chabowski, A. (2019) Insulin Resistance and Oxidative Stress in the Brain: What’s New? International Journal of Molecular Sciences, 20, Article 874. https://doi.org/10.3390/ijms20040874 |
[37] | Li, L., Zhang, H., Chen, B., Xia, B., Zhu, R., Liu, Y., et al. (2022) BaZiBuShen Alleviates Cognitive Deficits and Regulates Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-Tert Signaling Pathways in Aging Mice. Journal of Ethnopharmacology, 282, Article 114653. https://doi.org/10.1016/j.jep.2021.114653 |
[38] | Luo, A., Xie, Z., Wang, Y., Wang, X., Li, S., Yan, J., et al. (2022) Type 2 Diabetes Mellitus-Associated Cognitive Dysfunction: Advances in Potential Mechanisms and Therapies. Neuroscience & Biobehavioral Reviews, 137, Article 104642. https://doi.org/10.1016/j.neubiorev.2022.104642 |
[39] | Farbood, Y., Ghaderi, S., Rashno, M., Khoshnam, S.E., Khorsandi, L., Sarkaki, A., et al. (2019) Sesamin: A Promising Protective Agent against Diabetes-Associated Cognitive Decline in Rats. Life Sciences, 230, 169-177. https://doi.org/10.1016/j.lfs.2019.05.071 |
[40] | Yan, L. (2014) Pathogenesis of Chronic Hyperglycemia: From Reductive Stress to Oxidative Stress. Journal of Diabetes Research, 2014, Article 137919. https://doi.org/10.1155/2014/137919 |
[41] | Van Dyken, P. and Lacoste, B. (2018) Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier. Frontiers in Neuroscience, 12, Article 930. https://doi.org/10.3389/fnins.2018.00930 |
[42] | Golan, H. (2004) Involvement of Tumor Necrosis Factor Alpha in Hippocampal Development and Function. Cerebral Cortex, 14, 97-105. https://doi.org/10.1093/cercor/bhg108 |
[43] | Vinuesa, A., Pomilio, C., Gregosa, A., Bentivegna, M., Presa, J., Bellotto, M., et al. (2021) Inflammation and Insulin Resistance as Risk Factors and Potential Therapeutic Targets for Alzheimer’s Disease. Frontiers in Neuroscience, 15, Article 653651. https://doi.org/10.3389/fnins.2021.653651 |
[44] | Hui, S.T.Y., Andres, A.M., Miller, A.K., Spann, N.J., Potter, D.W., Post, N.M., et al. (2008) Txnip Balances Metabolic and Growth Signaling via PTEN Disulfide Reduction. Proceedings of the National Academy of Sciences, 105, 3921-3926. https://doi.org/10.1073/pnas.0800293105 |
[45] | Zhou, R., Tardivel, A., Thorens, B., Choi, I. and Tschopp, J. (2009) Thioredoxin-Interacting Protein Links Oxidative Stress to Inflammasome Activation. Nature Immunology, 11, 136-140. https://doi.org/10.1038/ni.1831 |
[46] | Zhang, J., Xia, L., Zhang, F., Zhu, D., Xin, C., Wang, H., et al. (2017) A Novel Mechanism of Diabetic Vascular Endothelial Dysfunction: Hypoadiponectinemia-Induced NLRP3 Inflammasome Activation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863, 1556-1567. https://doi.org/10.1016/j.bbadis.2017.02.012 |
[47] | Zhai, Y., Meng, X., Ye, T., Xie, W., Sun, G. and Sun, X. (2018) Inhibiting the NLRP3 Inflammasome Activation with MCC950 Ameliorates Diabetic Encephalopathy in db/db Mice. Molecules, 23, Article 522. https://doi.org/10.3390/molecules23030522 |
[48] | van Sloten, T.T., Sedaghat, S., Carnethon, M.R., Launer, L.J. and Stehouwer, C.D.A. (2020) Cerebral Microvascular Complications of Type 2 Diabetes: Stroke, Cognitive Dysfunction, and Depression. The Lancet Diabetes & Endocrinology, 8, 325-336. https://doi.org/10.1016/s2213-8587(19)30405-x |
[49] | Phoenix, A., Chandran, R. and Ergul, A. (2022) Cerebral Microvascular Senescence and Inflammation in Diabetes. Frontiers in Physiology, 13, Article 864758. https://doi.org/10.3389/fphys.2022.864758 |
[50] | Stehouwer, C.D.A. (2018) Microvascular Dysfunction and Hyperglycemia: A Vicious Cycle with Widespread Consequences. Diabetes, 67, 1729-1741. https://doi.org/10.2337/dbi17-0044 |
[51] | Marseglia, A., Fratiglioni, L., Kalpouzos, G., Wang, R., Bäckman, L. and Xu, W. (2018) Prediabetes and Diabetes Accelerate Cognitive Decline and Predict Microvascular Lesions: A Population‐Based Cohort Study. Alzheimer’s & Dementia, 15, 25-33. https://doi.org/10.1016/j.jalz.2018.06.3060 |
[52] | Orasanu, G. and Plutzky, J. (2009) The Pathologic Continuum of Diabetic Vascular Disease. Journal of the American College of Cardiology, 53, S35-S42. https://doi.org/10.1016/j.jacc.2008.09.055 |
[53] | Soares, E., Prediger, R.D., Nunes, S., Castro, A.A., Viana, S.D., Lemos, C., et al. (2013) Spatial Memory Impairments in a Prediabetic Rat Model. Neuroscience, 250, 565-577. https://doi.org/10.1016/j.neuroscience.2013.07.055 |
[54] | Snoek, F.J., Bremmer, M.A. and Hermanns, N. (2015) Constructs of Depression and Distress in Diabetes: Time for an Appraisal. The Lancet Diabetes & Endocrinology, 3, 450-460. https://doi.org/10.1016/s2213-8587(15)00135-7 |
[55] | Semenkovich, K., Brown, M.E., Svrakic, D.M. and Lustman, P.J. (2015) Depression in Type 2 Diabetes Mellitus: Prevalence, Impact, and Treatment. Drugs, 75, 577-587. https://doi.org/10.1007/s40265-015-0347-4 |
[56] | Fisher, L., Skaff, M.M., Mullan, J.T., Arean, P., Glasgow, R. and Masharani, U. (2008) A Longitudinal Study of Affective and Anxiety Disorders, Depressive Affect and Diabetes Distress in Adults with Type 2 Diabetes. Diabetic Medicine, 25, 1096-1101. https://doi.org/10.1111/j.1464-5491.2008.02533.x |
[57] | Roy, T. and Lloyd, C.E. (2012) Epidemiology of Depression and Diabetes: A Systematic Review. Journal of Affective Disorders, 142, S8-S21. https://doi.org/10.1016/s0165-0327(12)70004-6 |
[58] | Grigsby, A.B., Anderson, R.J., Freedland, K.E., Clouse, R.E. and Lustman, P.J. (2002) Prevalence of Anxiety in Adults with Diabetes. Journal of Psychosomatic Research, 53, 1053-1060. https://doi.org/10.1016/s0022-3999(02)00417-8 |
[59] | Kessler, R.C., Berglund, P., Demler, O., Jin, R., Merikangas, K.R. and Walters, E.E. (2005) Lifetime Prevalence and Age-of-Onset Distributions of DSM-IV Disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 593-602. https://doi.org/10.1001/archpsyc.62.6.593 |
[60] | Leray, E., Camara, A., Drapier, D., Riou, F., Bougeant, N., Pelissolo, A., et al. (2011) Prevalence, Characteristics and Comorbidities of Anxiety Disorders in France: Results from the “Mental Health in General Population” Survey (MHGP). European Psychiatry, 26, 339-345. https://doi.org/10.1016/j.eurpsy.2009.12.001 |
[61] | Minelli, A., Pedrini, L., Magni, L.R. and Rotondo, A. (2009) Personality Traits in an Italian Sample: Relationship with Anxiety and Depression. Clinical Practice & Epidemiology in Mental Health, 5, 26-30. https://doi.org/10.2174/1745017900905010026 |
[62] | Egede, L. (2005) Effect of Depression on Self-Management Behaviors and Health Outcomes in Adults with Type 2 Diabetes. Current Diabetes Reviews, 1, 235-243. https://doi.org/10.2174/157339905774574356 |
[63] | Smith, K.J., Béland, M., Clyde, M., Gariépy, G., Pagé, V., Badawi, G., et al. (2013) Association of Diabetes with Anxiety: A Systematic Review and Meta-Analysis. Journal of Psychosomatic Research, 74, 89-99. https://doi.org/10.1016/j.jpsychores.2012.11.013 |
[64] | Xu, Y., Zhou, H. and Zhu, Q. (2017) The Impact of Microbiota-Gut-Brain Axis on Diabetic Cognition Impairment. Frontiers in Aging Neuroscience, 9, Article 106. https://doi.org/10.3389/fnagi.2017.00106 |
[65] | Singhal, K. and Sandhir, R. (2014) L‐Type Calcium Channel Blocker Ameliorates Diabetic Encephalopathy by Modulating Dysregulated Calcium Homeostasis. Journal of Neuroscience Research, 93, 296-308. https://doi.org/10.1002/jnr.23478 |
[66] | Kong, F., Ma, L., Guo, J., Xu, L., Li, Y. and Qu, S. (2018) Endoplasmic Reticulum Stress/Autophagy Pathway Is Involved in Diabetes-Induced Neuronal Apoptosis and Cognitive Decline in Mice. Clinical Science, 132, 111-125. https://doi.org/10.1042/cs20171432 |
[67] | Tang, S., Ren, Y., Ren, X., Cao, J., Hong, H., Ji, H., et al. (2019) ERα and/or ERβ Activation Ameliorates Cognitive Impairment, Neurogenesis and Apoptosis in Type 2 Diabetes Mellitus Mice. Experimental Neurology, 311, 33-43. https://doi.org/10.1016/j.expneurol.2018.09.002 |