全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有常数捕获猎物和Allee效应的Leslie-Gower模型的动力学研究
The Dynamics Study of the Leslie-Gower Model with Constant Prey Capture and Effect

DOI: 10.12677/aam.2024.137328, PP. 3425-3432

Keywords: Allee效应,有界性,稳定性,平衡点
Allee Effect
, Boundedness, Stability, Equilibrium Point

Full-Text   Cite this paper   Add to My Lib

Abstract:

文章考虑具Allee效应的Leslie-Gower模型。在常数捕获的情况下,研究了捕食者和食饵的动力学行为,分析了模型的有界性、平衡点的稳定性和类型以及Hopf分支现象。
In this paper, the dynamic behavior of predator and prey is studied by adding the restriction of the Allee effect of predator to the Leslie Gower model in the case of constant predator capture. In this paper, the boundedness of the model, the stability and type of equilibrium point and Hopf branching phenomenon are analyzed.

References

[1]  周艳, 张存华. 具有集群行为的捕食者-食饵反应扩散系统的稳定性和Turing不稳定性[J]. 山东大学学报(理学版), 2021, 56(7): 73-81.
[2]  李梦婷, 周文. 具有群体性行为的捕食者-食饵系统稳定性分析[J]. 安庆师范大学学报: 自然科学版, 2023, 29(2): 103-109.
[3]  Cai, L., Chen, G. and Xiao, D. (2012) Multiparametric Bifurcations of an Epidemiological Model with Strong Allee Effect. Journal of Mathematical Biology, 67, 185-215.
https://doi.org/10.1007/s00285-012-0546-5
[4]  李彦, 陈博. 一类扩散Leslie型捕食-食饵模型的动力学性质[J]. 淮阴师范学院学报(自然科学版), 2023, 22(4): 283-288.
[5]  González-Olivares, E., Mena-Lorca, J., Rojas-Palma, A. and Flores, J.D. (2011) Dynamical Complexities in the Leslie-Gower Predator-Prey Model as Consequences of the Allee Effect on Prey. Applied Mathematical Modelling, 35, 366-381.
https://doi.org/10.1016/j.apm.2010.07.001
[6]  方侃, 曾怀杰, 陈晓英. 具有捕食者Allee效应的Leslie-Gower模型的动力学分析[J]. 延边大学学报(自然科学版), 2022, 48(1): 25-29, 40.
[7]  Yao, Y. (2023) Dynamics of a Leslie-Gower Type Predator-Prey System with Herd Behavior and Constant Harvesting in Prey. arXiv: 2307.12117.
[8]  May, R.M., Beddington, J.R., Clark, C.W., Holt, S.J. and Laws, R.M. (1979) Management of Multispecies Fisheries. Science, 205, 267-277.
https://doi.org/10.1126/science.205.4403.267
[9]  Aziz-Alaoui, M.A. and Daher Okiye, M. (2003) Boundedness and Global Stability for a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes. Applied Mathematics Letters, 16, 1069-1075.
https://doi.org/10.1016/s0893-9659(03)90096-6
[10]  Brauer, F. (1979) Decay Rates for Solutions of a Class of Differential-Difference Equations. SIAM Journal on Mathematical Analysis, 10, 783-788.
https://doi.org/10.1137/0510074
[11]  Harcourt, D.G. (1971) Population Dynamics of Leptinotarsa decemlineata (Say) in Eastern Ontario: III. Major Population Processes. The Canadian Entomologist, 103, 1049-1061.
https://doi.org/10.4039/ent1031049-7
[12]  González-Olivares, E., Mena-Lorca, J., Rojas-Palma, A. and Flores, J.D. (2011) Dynamical Complexities in the Leslie-Gower Predator-Prey Model as Consequences of the Allee Effect on Prey. Applied Mathematical Modelling, 35, 366-381.
https://doi.org/10.1016/j.apm.2010.07.001
[13]  Perko, L. (2001) Differential Equations and Dynamical Systems. Springer.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133