|
基于不完整标签的增强低秩表示用于预测阿尔茨海默病进展
|
Abstract:
本文提出了一种名为基于不完整标签的增强低秩表示(ELRRIL)模型,用于解决神经影像数据中不完整标签样本和噪声问题,进而提高阿尔茨海默病(AD)进展预测的准确性。我们的方法利用矩阵分解技术,将不完整的认知评分矩阵分解为两个组成部分:一方面,通过增强的流形正则化恢复的无缺失值的认知评分矩阵,该正则化能够捕捉局部标签相关性;另一方面,基于噪声的稀疏假设,通过?1范数控制的错误分量。最后,我们使用低秩回归模型,将恢复的矩阵作为目标,提高对噪声和异常值的鲁棒性,并引入了?2,1范数作为稀疏正则化项来识别重要的神经影像特征。实验结果表明,ELRRIL模型在特征选择和预测性能方面均优于现有的先进方法。
In this paper, a new model called Enhanced Low Rank Representation with Incomplete Labels (ELRRIL) is proposed to solve the problem of incomplete label samples and noise in neuroimage data, thereby improving the accuracy of predicting the progression of Alzheimer’s disease (AD). Our method uses matrix decomposition techniques to decompose the incomplete cognitive score matrix into two components: one is the missing value-free cognitive score matrix recovered by enhanced manifold regularization, which can capture local label correlations; The other is the error component controlled by the ?1 normbased on the sparse assumption of noise. In addition, we develop a low-rank regression model that targets the recovered matrix to improve robustness to noise and outliers, and introduce the ?2,1 norm as a sparse regularization term to identify important neuroimage features. Experimental results show that the ELRRIL model is superior to the existing advanced methods in feature selection and prediction performance.
[1] | Alberdi, A., Aztiria, A. and Basarab., A. (2016) On the Early Diagnosis of Alzheimer’s Disease from Multimodal Signals: A Survey. Artificial Intelligence in Medicine, 71, 1-29. https://doi.org/10.1016/j.artmed.2016.06.003 |
[2] | Association, A. (2019) 2019 Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia, 15, 321-387. https://doi.org/10.1016/j.jalz.2019.01.010 |
[3] | Lai, Z., Xu, Y., Chen, Q., et al. (2014) Multilinear Sparse Principal Component Analysis. IEEE Transactions on Neural Networks and Learning Systems, 25, 1942-1950. https://doi.org/10.1109/TNNLS.2013.2297381 |
[4] | Cano, S.J., Posner, H.B., Moline, M.L., Hurt, S.W., Swartz, J., Hsu, T. and Hobart, J.C. (2010) The Adas-Cog in Alzheimer’s Disease Clinical Trials: Psychometric Evaluation of the Sum and Its Parts. Journal of Neurology, Neurosurgery & Psychiatry, 81, 1363-1368. https://doi.org/10.1136/jnnp.2009.204008 |
[5] | Drucker, H., Burges, C.J., Kaufman, L., Smola, A. and Vapnik, V. (1996) Support Vector Regression Machines. Advances in Neural Information Processing Systems, 29, 157-286. |
[6] | Huang, J., Nie, F., Huang, H., et al. (2013) Supervised and Projected Sparse Coding for Image Classifiction. Proceedings of the AAAI Conference on Artificial Intelligence, Bellevue, 14-18 July 2013, 438-444. https://doi.org/10.1609/aaai.v27i1.8691 |
[7] | Naseem, I., Togneri, R. and Bennamoun, M. (2012) Robust Regression for Face Recognition. Pattern Recognition, 45, 104-118. https://doi.org/10.1016/j.patcog.2011.07.003 |
[8] | Yang, M., Zhang, L., Yang, J., et al. (2012) Regularized Robust Coding for Face Recognition. IEEE Transactions on Image Processing, 22, 1753-1766. https://doi.org/10.1109/TIP.2012.2235849 |
[9] | Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x |
[10] | Chen, Z., Wu, X.J. and Kittler, J. (2019) A Sparse Regularized Nuclear Norm Based Matrix Regression for Face Recognition with Contiguous Occlusion. Pattern Recognition Letters, 125, 494-499. https://doi.org/10.1016/j.patrec.2019.05.018 |
[11] | Qian, J., Yang, J., Xu, Y., et al. (2020) Image Decomposition Based Matrix Regression with Applications to Robust Face Recognition. Pattern Recognition, 102, Article 107204. https://doi.org/10.1016/j.patcog.2020.107204 |
[12] | Wang, C., Saar, V., Leung, K.L., Chen, L. and Wong, G. (2018) Human Amyloid Peptide and Tau Co-Expression Impairs Behavior and Causes Specific Gene Expression Changes in Caenorhabditis Elegans. Neurobiology of Disease, 109, 88-101. https://doi.org/10.1016/j.patcog.2020.107204 |
[13] | Wolk, D. and Vaishnavi, S. (2016) Mild Cognitive Impairment and Alzheimer’s Disease. International Neurology, 133, Article 1391. https://doi.org/10.1002/9781118777329.ch39 |
[14] | Ball, M., Hachinski, V., Fox, A., Kirshen, A., Fisman, M., Blume, W., Kral, V., Fox, H. and Merskey, H. (1985) A New Definition of Alzheimer’s Disease: A Hippocampal Dementia. The Lancet, 325, 14-16. https://doi.org/10.1016/S0140-6736(85)90965-1 |
[15] | Poulin, S.P., Dautoff, R., Morris, J.C., Barrett, L.F., Dickerson, B.C., Initiative, A.D.N., et al. (2011) Amygdala Atrophy Is Prominent in Early Alzheimer’s Disease and Relates to Symptom Severity. Psychiatry Research: Neuroimaging, 194, 7-13. https://doi.org/10.1016/j.pscychresns.2011.06.014 |
[16] | Penniello, M.J., Lambert, J., Eustache, F., Petit-Taboué, M.C., Barré, L., Viader, F., Morin, P., Lechevalier, B. and Baron, J.C. (1995) A Pet Study of the Functional Neuroanatomy of Writing Impairment in Alzheimer’s Disease: The Role of the Left Supramarginal and Left Angular Gyri. Brain, 118, 697-706. https://doi.org/10.1093/brain/118.3.697 |