|
-矩阵线性互补问题解的误差界新估计
|
Abstract:
基于线性互补问题的等价形式,结合不等式的放缩技巧,给出了MBπR-矩阵线性互补问题解的误差界新估计式。数值实例说明,该误差界改进了现有文献的有关结果。
Based on the equivalent form of the linear complementarity problem, the error bound for solutions ofMBπR-matrix linear complementarity problemsis obtained by combining the inequality scaling technique. Numerical examples show that this error bound improves the results of the existing literature.
[1] | Cottle, R.W., Pang, J.S. and Stone, R.E. (1992) The Linear Complementarity Problem. Academic Press. |
[2] | Pe?a, J.M. (2003) On an Alternative to Gerschgorin Circles and Ovals of Cassini. Numerische Mathematik, 95, 337-345. https://doi.org/10.1007/s00211-002-0427-8 |
[3] | Murty, K.G. (1988) Linear Complementarity, Linear and Nonlinear Programming. Heldermann. |
[4] | Dai, P.-F., Li, Y.-T. and Lu, C.-J. (2013) New Error Bounds for Linear Complementarity Problem with an SB-matrix. Numerical Algorithms, 64, 741-757. https://doi.org/10.1007/s11075-012-9691-6 |
[5] | Chen, X. and Xiang, S. (2006) Computation of Error Bounds for P-Matrix Linear Complementarity Problems. Mathematical Programming, 106, 513-525. https://doi.org/10.1007/s10107-005-0645-9 |
[6] | Dai, P.-F., Li, Y.-T. and Lu, C.-J. (2012) Erratum to: Error Bounds for Linear Complementarity Problems for SB-Matrices. Numerical Algorithms, 61, Article 187. https://doi.org/10.1007/s11075-012-9580-z |
[7] | Mathias, R. and Pang, J.S. (1990) Error Bounds for the Linear Complementarity Problem with a P-Matrix. Linear Algebra and Its Applications, 132, 123-136. https://doi.org/10.1016/0024-3795(90)90058-K |
[8] | Li, W. and Zheng, H. (2014) Some New Error Bounds for Linear Complementarity Problems of H-Matrices. Numerical Algorithms, 67, 257-269. https://doi.org/10.1007/s11075-013-9786-8 |
[9] | García-Esnaola, M. and Pe?a, J.M. (2009) Error Bounds for Linear Complementarity Problems for B-Matrices. Applied Mathematics Letters, 22, 1071-1075. https://doi.org/10.1016/j.aml.2008.09.001 |
[10] | García-Esnaola, M. and Pe?a, J.M. (2012) Error Bounds for Linear Complementarity Problems Involving BS-Matrices. Applied Mathematics Letters, 25, 1379-1383. https://doi.org/10.1016/j.aml.2011.12.006 |
[11] | Dai, P.-F. (2010) Error Bounds for Linear Complementarity Problems of DB-Matrices. Linear Algebra and Its Applications, 434, 830-840. https://doi.org/10.1016/j.laa.2010.09.049 |
[12] | Gao, Y.-M. and Wang, X.-H. (1992) Criteria for Generalized Diagonally Dominant Matrices and M-Matrices. Linear Algebra and Its Applications, 169, 257-268. https://doi.org/10.1016/0024-3795(92)90182-A |
[13] | 王许慧. P-矩阵的两个新子类及其在线性补问题误差界估计中的应用[D]: [硕士学位论文]. 昆明: 云南大学, 2014. |
[14] | 陈景良, 向晖. 特殊矩阵[M]. 北京: 清华大学出版社, 2001. |
[15] | Berman, A. and Plemmons, R.-J. (1994) Nonnegative Matrix in the Mathematical Sciences. SIAM Publisher. https://doi.org/10.1137/1.9781611971262 |
[16] | Neumann, M., Pe?a, J.M. and Pryporova, O. (2013) Some Classes of Nonsingular Matrices and Applications. Linear Algebra and Its Applications, 438, 1936-1945. https://doi.org/10.1016/j.laa.2011.10.041 |
[17] | 王许慧, 李朝迁, 李耀堂. P-阵的两个新子类[J]. 延安大学学报: 自然科学版, 2013, 32(4): 4-6+9. |
[18] | Brualdi, R.A. and Ryser, H.J. (1991) Combinatorial Matrix Theory. Cambridge University Press. https://doi.org/10.1017/CBO9781107325708 |
[19] | Horn, R.A. and Johnson, C.R. (2012) Matrix Analysis. Cambridge University Press. https://doi.org/10.1017/CBO9781139020411 |
[20] | Sogabe, T. (2008) Numerical Algorithms for Solving Comrade Linear Systems Based on Tridiagonal Solvers. Applied Mathematics and Computation, 198, 117-122. https://doi.org/10.1016/j.amc.2007.08.029 |
[21] | Hu, J.G. (1982) Estimates of| and Their Applications. Mathematica Numerica Sinica, 4, 272-282. |
[22] | Chen, T., Li, W., Wu, X., et al. (2015) Error Bounds for Linear Complementarity Problems of MB-Matrices. Numerical Algorithms, 70, 341-356. https://doi.org/10.1007/s11075-014-9950-9 |
[23] | Bai, Z.Z. (2010) Modulus-Based Matrix Splitting Iteration Methods for Linear Complementarity Problems. Numerical Linear Algebra with Applications, 17, 917-933. https://doi.org/10.1002/nla.680 |