全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

欧拉–拉格朗日系统在权重不平衡有向图下的分布式优化算法
Distributed Optimization Algorithm for Euler-Lagrange Systems over Weight-Unbalanced Digraph

DOI: 10.12677/aam.2024.137306, PP. 3201-3211

Keywords: 分布式优化算法,权重不平衡有向图,欧拉–拉格朗日系统
Distributed Optimization
, Weight-Unbalanced Digraph, Euler-Lagrange Systems

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了欧拉–拉格朗日(EL)多智能体系统在权重不平衡有向图下的分布式优化问题,优化目标为通过智能体间的局部通讯最小化全局目标函数,该目标函数为智能体自身局部目标函数的和。为解决该问题,本文设计平衡补偿变量调节拓扑权重,并提出EL系统在权重不平衡有向图下的分布式优化算法,该算法使智能体状态达成一致的同时,协同最小化全局目标函数。最后,给出一个基于Simulink的数值仿真验证所提出算法的有效性。
This paper investigates the distributed optimization problem of Euler-Lagrange (EL) multi-agent systems in weighted unbalanced digraphs, the optimization objective of this paper is to minimize the global cost function through local communications among agents, where the global cost function is summed up by local ones assigned to corresponding agent. To address this problem, the balanced compensation variables are designed to adjust the topology weights, then, a distributed optimization algorithm for EL systems over weight-unbalanced digraphs is proposed, which enables agents to achieve consensus while cooperatively minimizing the global cost function. Finally, numerical simulations based on Simulink are provided to verify the effectiveness of the proposed algorithm.

References

[1]  Cherukuri, A. and Cortes, J. (2015) Distributed Generator Coordination for Initialization and Anytime Optimization in Economic Dispatch. IEEE Transactions on Control of Network Systems, 2, 226-237.
https://doi.org/10.1109/TCNS.2015.2399191
[2]  Boyd, S., Parikh, N., Chu, E., et al. (2011) Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and Trends in Machine Learning, 3, 1-122.
https://doi.org/10.1561/2200000016
[3]  Zou, Y., Meng, Z. and Hong, Y. (2020) Adaptive Distributed Optimization Algorithms for Euler-Lagrange Systems. Automatica, 119, Article 109060.
https://doi.org/10.1016/j.automatica.2020.109060
[4]  Nedic, A. and Ozdaglar, A. (2009) Distributed Subgradient Methods for Multi-Agent Optimization. IEEE Transactions on Automatic Control, 54, 48-61.
https://doi.org/10.1109/TAC.2008.2009515
[5]  Nedic, A., Ozdaglar, A. and Parrilo, P.A. (2010) Constrained Consensus and Optimization in Multi-Agent Networks. IEEE Transactions on Automatic Control, 55, 922-938.
https://doi.org/10.1109/TAC.2010.2041686
[6]  Lin, P., Ren, W. and Song, Y. (2016) Distributed Multi-Agent Optimization Subject to Nonidentical Constraints and Communication Delays. Automatica, 65, 120-131.
https://doi.org/10.1016/j.automatica.2015.11.014
[7]  Lin, P., Ren, W. and Farrell, J.A. (2017) Distributed Continuous-Time Optimization: Nonuniform Gradient Gains, Finite-Time Convergence, and Convex Constraint Set. IEEE Transactions on Automatic Control, 62, 2239-2253.
https://doi.org/10.1109/TAC.2016.2604324
[8]  Hatanaka, T., Chopra, N., Ishizaki, T., et al. (2018) Passivity-Based Distributed Optimization with Communication Delays Using PI Consensus Algorithm. IEEE Transactions on Automatic Control, 63, 4421-4428.
https://doi.org/10.1109/TAC.2018.2823264
[9]  Gharesifard, B. and Cortes, J. (2014) Distributed Continuous-Time Convex Optimization on Weight-Balanced Digraphs. IEEE Transactions on Automatic Control, 59, 781-786.
https://doi.org/10.1109/TAC.2013.2278132
[10]  Zhu, Y., Yu, W., Wen, G., et al. (2019) Continuous-Time Coordination Algorithm for Distributed Convex Optimization over Weight-Unbalanced Directed Networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 66, 1202-1206.
https://doi.org/10.1109/TCSII.2018.2878250
[11]  Kia, S., Cortes, J. and Martinez, S. (2015) Distributed Convex Optimization via Continuous-Time Coordination Algorithms with Discrete-Time Communication. Automatica, 55, 254-264.
https://doi.org/10.1016/j.automatica.2015.03.001
[12]  Zhao, Y., Liu, Y., Wen, G., et al. (2017) Distributed Optimization for Linear Multi-Agent Systems: Edge-and Node-Based Adaptive Designs. IEEE Transactions on Automatic Control, 62, 3602-3609.
https://doi.org/10.1109/TAC.2017.2669321
[13]  Nuno, E., Ortega, R., Basanez, L., et al. (2011) Synchronization of Networks of Nonidentical Euler-Lagrange Systems with Uncertain Parameters and Communication Delays. IEEE Transactions on Automatic Control, 56, 935-941.
https://doi.org/10.1109/TAC.2010.2103415
[14]  Ortega, R., Loria, A., Nicklasson, P.J., et al. (1998) Passivity Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications. 1st Edition, Springer.
https://doi.org/10.1007/978-1-4471-3603-3_1
[15]  Deng, Z. and Hong, Y. (2016) Multi-Agent Optimization Design for Autonomous Lagrangian Systems. Unmanned Systems, 4, 5-13.
https://doi.org/10.1142/S230138501640001X
[16]  Zhang, Y., Deng, Z. and Hong, Y. (2017) Distributed Optimal Coordination for Multiple Heterogeneous Euler-Lagrange Systems. Automatica, 79, 207-213.
https://doi.org/10.1016/j.automatica.2017.01.004
[17]  Zou, Y., Huang, B. and Meng, Z. (2021) Distributed Continuous-Time Algorithm for Constrained Optimization of Networked Euler-Lagrange Systems. IEEE Transactions on Control of Network Systems, 8, 1034-1042.
https://doi.org/10.1109/TCNS.2021.3068352
[18]  Qin,Z., Jiang, L., Liu, T., et al. (2022) Distributed Optimization for Uncertain Euler-Lagrange Systems with Local and Relative Measurements. Automatica, 139, 110-113.
https://doi.org/10.1016/j.automatica.2021.110113
[19]  Rockafellar, R.T. (2015) Nonlinear Programming: Theory and Algorithms. Wiley.
[20]  Khall, H. (2022) Nonlinear Systems. 3rd Edition, Prentice-Hall.
[21]  Lasalle, J.P. (1968) Stability Theory for Ordinary Differential Equations. Journal of Differential Equations, 4, 57-65.
https://doi.org/10.1016/0022-0396(68)90048-X

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133