|
线粒动力学在射血分数保留型心衰中的研究进展
|
Abstract:
射血分数保留型心衰(HFpEF)作为临床上最常见的心血管疾病之一,是导致人类死亡的主要原因。据统计,HFpEF患者的年死亡率约为10%~20%。HFpEF不仅严重影响患者的生活质量,还给家庭和社会带来巨大的经济负担。近年来,研究发现,HFpEF患者的心肌细胞中存在线粒体稳态失衡现象。线粒体形态和功能的改变导致能量代谢障碍,进而加剧了心肌细胞的损伤。因此,进一步探索心肌线粒体稳态的调节机制及其与HFpEF的关系,可以为HFpEF的发病机理提供新的认识,并为寻找新的治疗方法和靶点提供理论基础。
Heart Failure with Preserved Ejection Fraction (HFpEF), as one of the most common cardiovascular diseases in clinic, is the main cause of human death. According to statistics, the annual mortality of HFpEF patients is about 10%-20%. HFpEF not only seriously affects the quality of life of patients, but also brings huge economic burden to families and society. In recent years, mitochondrial homeostasis imbalance has been found in cardiac myocytes of HFpEF patients. The changes of mitochondrial morphology and function lead to the disturbance of energy metabolism, which aggravates the damage of myocardial cells. Therefore, to further explore the regulation mechanism of myocardial mitochondria homeostasis and its relationship with HFpEF can provide new understanding of the pathogenesis of HFpEF and provide a theoretical basis for finding new therapeutic methods and targets.
[1] | 周京敏, 王华, 黎励文. 射血分数保留的心力衰竭诊断与治疗中国专家共识2023[J]. 中国循环杂志, 2023, 38(4): 375-393. |
[2] | Gollmer, J., Zirlik, A. and Bugger, H. (2020) Mitochondrial Mechanisms in Diabetic Cardiomyopathy. Diabetes & Metabolism Journal, 44, 33-53. https://doi.org/10.4093/dmj.2019.0185 |
[3] | Tilokani, L., Nagashima, S., Paupe, V. and Prudent, J. (2018) Mitochondrial Dynamics: Overview of Molecular Mechanisms. Essays in Biochemistry, 62, 341-360. https://doi.org/10.1042/ebc20170104 |
[4] | Youle, R.J. and van der Bliek, A.M. (2012) Mitochondrial Fission, Fusion, and Stress. Science, 337, 1062-1065. https://doi.org/10.1126/science.1219855 |
[5] | del Campo, A., Perez, G., Castro, P.F., Parra, V. and Verdejo, H.E. (2021) Mitochondrial Function, Dynamics and Quality Control in the Pathophysiology of HFpEF. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1867, Article ID: 166208. https://doi.org/10.1016/j.bbadis.2021.166208 |
[6] | Tong, D., Schiattarella, G.G., Jiang, N., Altamirano, F., Szweda, P.A., Elnwasany, A., et al. (2021) NAD+ Repletion Reverses Heart Failure with Preserved Ejection Fraction. Circulation Research, 128, 1629-1641. https://doi.org/10.1161/circresaha.120.317046 |
[7] | Kumar, A.A., Kelly, D.P. and Chirinos, J.A. (2019) Mitochondrial Dysfunction in Heart Failure with Preserved Ejection Fraction. Circulation, 139, 1435-1450. https://doi.org/10.1161/circulationaha.118.036259 |
[8] | Bowen, T.S., Rolim, N.P.L., Fischer, T., B?kkerud, F.H., Medeiros, A., Werner, S., et al. (2015) Heart Failure with Preserved Ejection Fraction Induces Molecular, Mitochondrial, Histological, and Functional Alterations in Rat Respiratory and Limb Skeletal Muscle. European Journal of Heart Failure, 17, 263-272. https://doi.org/10.1002/ejhf.239 |
[9] | Scandalis, L., Kitzman, D.W., Nicklas, B.J., Lyles, M., Brubaker, P., Nelson, M.B., et al. (2023) Skeletal Muscle Mitochondrial Respiration and Exercise Intolerance in Patients with Heart Failure with Preserved Ejection Fraction. JAMA Cardiology, 8, 575-584. https://doi.org/10.1001/jamacardio.2023.0957 |
[10] | Sabbah, H.N. (2020) Targeting the Mitochondria in Heart Failure: A Translational Perspective. JACC: Basic to Translational Science, 5, 88-106. https://doi.org/10.1016/j.jacbts.2019.07.009 |
[11] | Karamanlidis, G., Nascimben, L., Couper, G.S., Shekar, P.S., del Monte, F. and Tian, R. (2010) Defective DNA Replication Impairs Mitochondrial Biogenesis in Human Failing Hearts. Circulation Research, 106, 1541-1548. https://doi.org/10.1161/circresaha.109.212753 |
[12] | Gupta, R.C., Szekely, K., Wang, M., Zhang, K., Rastogi, S., Albrecht-Küpper, B., et al. (2013) Long-Term Therapy with the Partial Adenosine A 1-Receptor Agonist Capadenoson, Improves Peroxisome Proliferator-Activated Receptor Coactivator-1α Phosphorylation and Protein Expression in Left Ventricular Myocardium of Dogs with Chronic Heart Failure. Journal of the American College of Cardiology, 61, e702. https://doi.org/10.1016/s0735-1097(13)60702-0 |
[13] | Qiu, Z., Wei, Y., Song, Q., Du, B., Wang, H., Chu, Y., et al. (2019) The Role of Myocardial Mitochondrial Quality Control in Heart Failure. Frontiers in Pharmacology, 10, Article No. 1404. https://doi.org/10.3389/fphar.2019.01404 |
[14] | Pereira, R.O., Wende, A.R., Crum, A., Hunter, D., Olsen, C.D., Rawlings, T., et al. (2014) Maintaining PGC‐1α Expression Following Pressure Overload‐Induced Cardiac Hypertrophy Preserves Angiogenesis but Not Contractile or Mitochondrial Function. The FASEB Journal, 28, 3691-3702. https://doi.org/10.1096/fj.14-253823 |
[15] | Hu, X., Xu, X., Lu, Z., Zhang, P., Fassett, J., Zhang, Y., et al. (2011) AMP Activated Protein Kinase-α2 Regulates Expression of Estrogen-Related Receptor-α, a Metabolic Transcription Factor Related to Heart Failure Development. Hypertension, 58, 696-703. https://doi.org/10.1161/hypertensionaha.111.174128 |
[16] | Chaanine, A.H., Joyce, L. D., Stulak, J.M., Maltais, S., Joyce, D.L., Dearani, J.A., et al. (2019) Mitochondrial Morphology, Dynamics, and Function in Human Pressure Overload or Ischemic Heart Disease with Preserved or Reduced Ejection Fraction. Circulation: Heart Failure, 12, e005131. https://doi.org/10.1161/circheartfailure.118.005131 |
[17] | Molina, A.J.A., Bharadwaj, M.S., Van Horn, C., Nicklas, B.J., Lyles, M.F., Eggebeen, J., et al. (2016) Skeletal Muscle Mitochondrial Content, Oxidative Capacity, and Mfn2 Expression Are Reduced in Older Patients with Heart Failure and Preserved Ejection Fraction and Are Related to Exercise Intolerance. JACC: Heart Failure, 4, 636-645. https://doi.org/10.1016/j.jchf.2016.03.011 |
[18] | Sabbah, H.N., Gupta, R.C., Singh-Gupta, V., Zhang, K. and Lanfear, D.E. (2018) Abnormalities of Mitochondrial Dynamics in the Failing Heart: Normalization Following Long-Term Therapy with Elamipretide. Cardiovascular Drugs and Therapy, 32, 319-328. https://doi.org/10.1007/s10557-018-6805-y |
[19] | Archer, S.-L. (2014) Mitochondrial Fission and Fusion in Human Diseases. The New England Journal of Medicine, 370, 1073-1074. |
[20] | Yao, R., Ren, C., Xia, Z. and Yao, Y. (2020) Organelle-Specific Autophagy in Inflammatory Diseases: A Potential Therapeutic Target Underlying the Quality Control of Multiple Organelles. Autophagy, 17, 385-401. https://doi.org/10.1080/15548627.2020.1725377 |
[21] | Kawajiri, S., Saiki, S., Sato, S., Sato, F., Hatano, T., Eguchi, H., et al. (2010) PINK1 Is Recruited to Mitochondria with Parkin and Associates with LC3 in Mitophagy. FEBS Letters, 584, 1073-1079. https://doi.org/10.1016/j.febslet.2010.02.016 |
[22] | Shou, J. and Huo, Y. (2022) PINK1 Phosphorylates Drp1(S616) to Improve Mitochondrial Fission and Inhibit the Progression of Hypertension-Induced HFpEF. International Journal of Molecular Sciences, 23, Article No. 11934. https://doi.org/10.3390/ijms231911934 |
[23] | Yuan, X., Xiao, Y.-C., Zhang, G.-P., et al. (2016) Chloroquine Improves Left Ventricle Diastolic Function in Streptozotocin-Induced Diabetic Mice. Drug Design, Development and Therapy, 10, 2729-2737. |
[24] | Sharov, V.G., Todor, A., Khanal, S., Imai, M. and Sabbah, H.N. (2007) Cyclosporine a Attenuates Mitochondrial Permeability Transition and Improves Mitochondrial Respiratory Function in Cardiomyocytes Isolated from Dogs with Heart Failure. Journal of Molecular and Cellular Cardiology, 42, 150-158. https://doi.org/10.1016/j.yjmcc.2006.09.013 |
[25] | Haileselassie, B., Mukherjee, R., Joshi, A.U., Napier, B.A., Massis, L.M., Ostberg, N.P., et al. (2019) Drp1/Fis1 Interaction Mediates Mitochondrial Dysfunction in Septic Cardiomyopathy. Journal of Molecular and Cellular Cardiology, 130, 160-169. https://doi.org/10.1016/j.yjmcc.2019.04.006 |
[26] | Loffredo, F.S., Nikolova, A.P., Pancoast, J.R. and Lee, R.T. (2014) Heart Failure with Preserved Ejection Fraction: Molecular Pathways of the Aging Myocardium. Circulation Research, 115, 97-107. https://doi.org/10.1161/circresaha.115.302929 |
[27] | Tong, M., Saito, T., Zhai, P., Oka, S., Mizushima, W., Nakamura, M., et al. (2019) Mitophagy Is Essential for Maintaining Cardiac Function during High Fat Diet-Induced Diabetic Cardiomyopathy. Circulation Research, 124, 1360-1371. https://doi.org/10.1161/circresaha.118.314607 |
[28] | J?ger, S., Handschin, C., St.-Pierre, J. and Spiegelman, B.M. (2007) Amp-Activated Protein Kinase (AMPK) Action in Skeletal Muscle via Direct Phosphorylation of PGC-1α. Proceedings of the National Academy of Sciences, 104, 12017-12022. https://doi.org/10.1073/pnas.0705070104 |
[29] | Marin, T.L., Gongol, B., Zhang, F., Martin, M., Johnson, D.A., Xiao, H., et al. (2017) AMPK Promotes Mitochondrial Biogenesis and Function by Phosphorylating the Epigenetic Factors DNMT1, RBBP7, and HAT1. Science Signaling, 10, eaaf7478. https://doi.org/10.1126/scisignal.aaf7478 |
[30] | Yang, H., Kong, B., Shuai, W., Zhang, J. and Huang, H. (2020) MD1 Deletion Exaggerates Cardiomyocyte Autophagy Induced by Heart Failure with Preserved Ejection Fraction through ROS/MAPK Signalling Pathway. Journal of Cellular and Molecular Medicine, 24, 9300-9312. https://doi.org/10.1111/jcmm.15579 |
[31] | 唐艳. Gasdermin d介导内毒素血症致心肌功能障碍的机制研究[D]: [博士学位论文]. 长沙: 中南大学, 2023. |