全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

甘草防治心血管疾病的机制研究进展
Research Progress on the Mechanism of Glycyrrhiza uralensis on Prevention and Treatment of Cardiovascular Diseases

DOI: 10.12677/acm.2024.1472047, PP. 536-543

Keywords: 甘草,活性物质,心血管疾病,作用机制,综述
Licorice
, Active Substances, Cardiovascular Disease, Mechanism of Action, Review

Full-Text   Cite this paper   Add to My Lib

Abstract:

心血管疾病是目前全球最重要的公共卫生问题之一,居于我国城乡居民死亡构成比中的首位,目前治疗以西药为主,但常出现较多不良反应,预后欠佳。甘草,豆科甘草属多年草本植物,其内含有甘草素、甘草苷、甘草酸、甘草查耳酮A等多种活性成分。通过对已有研究进行综述,发现甘草及其活性成分具有保护心肌细胞、恢复心肌能量、保护血管内皮等作用,且传统中药治疗具有多靶点、多途径的优势,安全性较高,其主要通过减轻氧化应激、抗炎、改善线粒体功能等作用机制发挥功用。目前,甘草治疗心血管疾病方面已有诸多研究并取得一定成果,本文旨在总结近些年甘草及其活性成分治疗心血管疾病的相关机制研究,以期为甘草作为心血管疾病治疗药物提供理论依据,也为甘草作用机制的进一步研究提供参考。
Cardiovascular disease is one of the most important public health problems in the world, which ranks first in the mortality ratio of urban and rural residents in China. Western medicine is the main treatment at present, but there are often many adverse reactions and poor prognosis. Licorice, Leguminosae licorice is a perennial herb, which contains glycyrrhizin, glycyrrhizin, glycyrrhizic acid, licorice chalcone An and other active ingredients. Through the review of existing studies, it is found that licorice and its active components can protect cardiomyocytes, restore myocardial energy and protect vascular endothelium, and traditional Chinese medicine has the advantages of multi-targets, multi-pathways and high safety. It works mainly by reducing oxidative stress, anti-inflammation, improving mitochondrial function and so on. At present, there have been many studies on licorice in the treatment of cardiovascular diseases and some achievements have been made. The purpose of this paper is to summarize the related mechanisms of licorice and its active components in the treatment of cardiovascular diseases in recent years. It is expected to provide a theoretical basis for licorice as a cardiovascular disease treatment drug, and also provide a reference for further study of the mechanism of action of licorice.

References

[1]  刘萍. 甘草功效和临床用量的本草考证[J]. 中华中医药杂志, 2020, 35(1): 73-77.
[2]  段君, 许海, 沈峰. 甘草古今炮制方法考证及饮片质量研究现状[J]. 实用中医药杂志, 2022, 38(9): 1655-1658.
[3]  李冀, 李想, 曹明明, 等. 甘草药理作用及药对配伍比例研究进展[J]. 上海中医药杂志, 2019, 53(7): 83-87.
[4]  Liu, H., Wang, J., Zhou, W., Wang, Y. and Yang, L. (2013) Systems Approaches and Polypharmacology for Drug Discovery from Herbal Medicines: An Example Using Licorice. Journal of Ethnopharmacology, 146, 773-793.
https://doi.org/10.1016/j.jep.2013.02.004
[5]  王世苗, 张晓妍, 李紫薇. 甘草黄酮提取分离及药理活性研究进展[J]. 伊犁师范大学学报(自然科学版), 2021, 15(4): 35-42.
[6]  宋鉴书, 曹策, 李浩然, 等. 心肌缺血再灌注损伤氧化应激机制及中药的保护作用[J]. 中国中药杂志, 2024: 1-11.
[7]  卓凤巧, 黄占红, 刘宇捷. 甘草素对高糖诱导心肌细胞凋亡的影响及机制[J]. 中国临床药理学与治疗学, 2019, 24(2): 147-151.
[8]  Thakur, V., Alcoreza, N., Delgado, M., Joddar, B. and Chattopadhyay, M. (2021) Cardioprotective Effect of Glycyrrhizin on Myocardial Remodeling in Diabetic Rats. Biomolecules, 11, Article No. 569.
https://doi.org/10.3390/biom11040569
[9]  Zhang, X., Zhu, P., Zhang, X., Ma, Y., Li, W., Chen, J., et al. (2013) Natural Antioxidant-Isoliquiritigenin Ameliorates Contractile Dysfunction of Hypoxic Cardiomyocytes via AMPK Signaling Pathway. Mediators of Inflammation, 2013, Article ID: 390890.
https://doi.org/10.1155/2013/390890
[10]  于辉, 赵阳, 费家玥, 等. 异甘草素抑制SETD7表达可保护缺氧/复氧诱导心肌细胞的氧化损伤[J]. 中国组织工程研究, 2020, 24(35): 5613-5618.
[11]  Tang, T., Wang, X., Wang, L., Chen, M., Cheng, J., Zuo, M., et al. (2022) Liquiritin Inhibits H2O2‐Induced Oxidative Stress Injury in H9c2 Cells via the AMPK/SIRT1/NF-κB Signaling Pathway. Journal of Food Biochemistry, 46, e14351.
https://doi.org/10.1111/jfbc.14351
[12]  Li, H., Bu, L., Sun, X., Chu, X., Xue, Y., Zhang, M., et al. (2024) Mechanistic Investigation of the Ameliorative Effect of Liquiritin on Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury Based on Network Pharmacology and in Vitro Validation. Experimental and Therapeutic Medicine, 27, Article No. 117.
https://doi.org/10.3892/etm.2024.12405
[13]  刘萌. 甘草苷调控SLC7A11/GPX4信号通路预防阿霉素心脏毒性的机制研究[D]: [硕士学位论文]. 衡阳: 南华大学, 2022.
[14]  吴媛媛, 田萌, 谢锋, 等. TRPV1参与心肌缺血/再灌注损伤保护作用机制研究进展[J]. 辽宁中医药大学学报, 2020, 22(2): 67-71.
[15]  Zhai, C., Zhang, M., Zhang, Y., Xu, H., Wang, J., An, G., et al. (2012) Glycyrrhizin Protects Rat Heart against Ischemia-Reperfusion Injury through Blockade of HMGB1-Dependent Phospho-JNK/Bax Pathway. Acta Pharmacologica Sinica, 33, 1477-1487.
https://doi.org/10.1038/aps.2012.112
[16]  Cai, X., Wang, X., Li, J. and Chen, S. (2017) Protective Effect of Glycyrrhizin on Myocardial Ischemia/Reperfusion Injury-Induced Oxidative Stress, Inducible Nitric Oxide Synthase and Inflammatory Reactions through High-Mobility Group Box 1 and Mitogen-Activated Protein Kinase Expression. Experimental and Therapeutic Medicine, 14, 1219-1226.
https://doi.org/10.3892/etm.2017.4617
[17]  Lai, T., Shen, Y., Chen, C., Huang, B., Deng, T., Zhao, Z., et al. (2021) Glycyrrhizic Acid Ameliorates Myocardial Ischemia-Reperfusion Injury in Rats through Inhibiting Endoplasmic Reticulum Stress. European Journal of Pharmacology, 908, Article ID: 174353.
https://doi.org/10.1016/j.ejphar.2021.174353
[18]  Li, M., Wen, Z., Xue, Y., Han, X., Ma, D., Ma, Z., et al. (2019) Cardioprotective Effects of Glycyrrhizic Acid Involve Inhibition of Calcium Influx via L-Type Calcium Channels and Myocardial Contraction in Rats. Naunyn-Schmiedebergs Archives of Pharmacology, 393, 979-989.
https://doi.org/10.1007/s00210-019-01767-3
[19]  Han, J., Su, G., Wang, Y., Lu, Y., Zhao, H. and Shuai, X. (2020) 18β-Glycyrrhetinic Acid Improves Cardiac Diastolic Function by Attenuating Intracellular Calcium Overload. Current Medical Science, 40, 654-661.
https://doi.org/10.1007/s11596-020-2232-y
[20]  Xu, C., Liang, C., Sun, W., Chen, J. and Chen, X. (2018) Glycyrrhizic Acid Ameliorates Myocardial Ischemic Injury by the Regulation of Inflammation and Oxidative State. Drug Design, Development and Therapy, 12, 1311-1319.
https://doi.org/10.2147/dddt.s165225
[21]  Lin, J., Yang, K., Ting, P., Lee, W., Lin, D. and Chang, J. (2023) Licochalcone a Improves Cardiac Functions after Ischemia-Reperfusion via Reduction of Ferroptosis in Rats. European Journal of Pharmacology, 957, Article ID: 176031.
https://doi.org/10.1016/j.ejphar.2023.176031
[22]  马治, 王欣爽, 刘玥, 等. 甘草次酸的差向异构体对顺铂诱导H9c2心肌细胞损伤的保护机制[J]. 天津医药, 2022, 50(12): 1264-1269.
[23]  何苗, 李耀伟, 王志琪, 等. 基于细胞线粒体能量代谢研究甘草次酸拮抗乌头碱的心肌毒性作用[J]. 湖南中医药大学学报, 2021, 41(11): 1650-1656.
[24]  赵秀荣, 侯绍郅, 皇甫通, 等. 异甘草素改善RAW264.7细胞线粒体生物发生抑制LPS诱导的炎症反应[J]. 烟台大学学报(自然科学与工程版), 2022, 35(1): 60-69.
[25]  Tang, Q., Cao, Y., Xiong, W., Ke, X., Zhang, J., Xia, Y., et al. (2020) Glycyrrhizic Acid Exerts Protective Effects against Hypoxia/Reoxygenation-Induced Human Coronary Artery Endothelial Cell Damage by Regulating Mitochondria. Experimental and Therapeutic Medicine, 20, 335-342.
https://doi.org/10.3892/etm.2020.8668
[26]  Upadhyay, S., Mantha, A.K. and Dhiman, M. (2020) Glycyrrhiza Glabra (Licorice) Root Extract Attenuates Doxorubicin-Induced Cardiotoxicity via Alleviating Oxidative Stress and Stabilising the Cardiac Health in H9c2 Cardiomyocytes. Journal of Ethnopharmacology, 258, Article ID: 112690.
https://doi.org/10.1016/j.jep.2020.112690
[27]  牛丕莲, 范永鑫, 路富瑞, 等. 甘草提取物对TGF-β1诱导心肌成纤维细胞纤维化的影响[J]. 中国临床药理学与治疗学, 2022, 27(2): 129-135.
[28]  Ma, D., Zhang, J., Zhang, Y., Zhang, X., Han, X., Song, T., et al. (2018) Inhibition of Myocardial Hypertrophy by Magnesium Isoglycyrrhizinate through the Tlr4/NF-Κβ Signaling Pathway in Mice. International Immunopharmacology, 55, 237-244.
[29]  Wu, R., Yu, T., Zhou, J., Li, M., Gao, H., Zhao, C., et al. (2018) Targeting HMGB1 Ameliorates Cardiac Fibrosis through Restoring Tlr2-Mediated Autophagy Suppression in Myocardial Fibroblasts. International Journal of Cardiology, 267, 156-162.
https://doi.org/10.1016/j.ijcard.2018.04.103
[30]  Zhang, Y., Zhang, L., Zhang, Y., Xu, J., Sun, L. and Li, S. (2016) The Protective Role of Liquiritin in High Fructose-Induced Myocardial Fibrosis via Inhibiting NF-Κβ and MAPK Signaling Pathway. Biomedicine & Pharmacotherapy, 84, 1337-1349.
https://doi.org/10.1016/j.biopha.2016.10.036
[31]  Han, X., Yang, Y., Zhang, M., Li, L., Xue, Y., Jia, Q., et al. (2022) Liquiritin Protects against Cardiac Fibrosis after Myocardial Infarction by Inhibiting CCL5 Expression and the NF-Κβ Signaling Pathway. Drug Design, Development and Therapy, 16, 4111-4125.
https://doi.org/10.2147/dddt.s386805
[32]  Bolognese, L., Neskovic, A.N., Parodi, G., Cerisano, G., Buonamici, P., Santoro, G.M., et al. (2002) Left Ventricular Remodeling after Primary Coronary Angioplasty: Patterns of Left Ventricular Dilation and Long-Term Prognostic Implications. Circulation, 106, 2351-2357.
https://doi.org/10.1161/01.cir.0000036014.90197.fa
[33]  姚德山. Brcc36对心脏应激状态下DNA损伤的保护机制及异甘草素的干预研究[D]: [博士学位论文]. 扬州: 扬州大学, 2022.
[34]  Gao, M., Cai, Q., Si, H., Shi, S., Wei, H., Lv, M., et al. (2022) Isoliquiritigenin Attenuates Pathological Cardiac Hypertrophy via Regulating AMPKα in Vivo and in Vitro. Journal of Molecular Histology, 53, 679-689.
https://doi.org/10.1007/s10735-022-10090-w
[35]  庄开颜, 高硕, 柳晴, 等. 基于斑马鱼模型和网络药理学的甘草酸拮抗乌头碱心脏毒性作用与机制研究[J]. 药物评价研究, 2021, 44(7): 1368-1376.
[36]  侯佳华, 韦秋, 黄露, 等. 甘草次酸拮抗阿霉素心脏毒性的作用研究[J]. 南开大学学报(自然科学版), 2022, 55(6): 7-14.
[37]  陆文强. 异甘草素通过调节UCP2对抗阿霉素所致心脏毒性[D]: [硕士学位论文]. 杭州: 浙江大学, 2021.
[38]  吕雪丽. 甘草酸调控HMGB1介导自噬改善阿霉素心脏毒性的机制研究[D]: [硕士学位论文]. 广州: 南方医科大学, 2020.
[39]  Lv, X., Zhu, Y., Deng, Y., Zhang, S., Zhang, Q., Zhao, B., et al. (2020) Glycyrrhizin Improved Autophagy Flux via Hmgb1-Dependent AKT/Mtor Signaling Pathway to Prevent Doxorubicin-Induced Cardiotoxicity. Toxicology, 441, Article ID: 152508.
https://doi.org/10.1016/j.tox.2020.152508
[40]  Zheng, B., Yang, Y., Li, J., Li, J., Zuo, S., Chu, X., et al. (2021) Magnesium Isoglycyrrhizinate Alleviates Arsenic Trioxide-Induced Cardiotoxicity: Contribution of Nrf2 and Tlr4/NF-Κβ Signaling Pathway. Drug Design, Development and Therapy, 15, 543-556.
https://doi.org/10.2147/dddt.s296405
[41]  叶扬. 异甘草素对小鼠肠系膜动脉舒张的作用机制研究[D]: [硕士学位论文]. 东莞: 江南大学, 2019.
[42]  Gadanec, L.K., Andersson, U., Apostolopoulos, V. and Zulli, A. (2023) Glycyrrhizic Acid Inhibits High-Mobility Group Box-1 and Homocysteine-Induced Vascular Dysfunction. Nutrients, 15, Article No. 3186.
https://doi.org/10.3390/nu15143186
[43]  韩维维, 王博, 钟晴, 等. 18β-甘草次酸通过PGK1糖酵解途径抑制oxLDL诱导的血管内皮细胞凋亡研究[J]. 天然产物研究与开发, 2024, 36(3): 478-484.
[44]  卢治言, 李奕男, 袁玥, 等. 异甘草素通过HDAC3抑制血管内皮细胞的炎症反应[J]. 西安交通大学学报(医学版), 2023, 44(6): 852-858.
[45]  Liu, S., Hu, R., Du, J., Li, Y. and Li, X. (2022) Glycyrrhizin Ameliorates Vascular Endothelial Cell Senescence by Inhibiting HMGB1 in HFD/STZ-Induced Diabetic Rats and Human Umbilical Vein Endothelial Cells. European Journal of Pharmacology, 931, Article ID: 175196.
https://doi.org/10.1016/j.ejphar.2022.175196
[46]  Feng, L., Zhu, M., Zhang, M., Wang, R., Tan, X., Song, J., et al. (2013) Protection of Glycyrrhizic Acid against Ages-Induced Endothelial Dysfunction through Inhibiting Rage/NF-Κβ Pathway Activation in Human Umbilical Vein Endothelial Cells. Journal of Ethnopharmacology, 148, 27-36.
https://doi.org/10.1016/j.jep.2013.03.035
[47]  Chung, C., Chen, J., Huang, W., Sheu, J., Hsia, C., Jayakumar, T., et al. (2022) Glabridin, a Bioactive Flavonoid from Licorice, Effectively Inhibits Platelet Activation in Humans and Mice. International Journal of Molecular Sciences, 23, Article No. 11372.
https://doi.org/10.3390/ijms231911372
[48]  Lien, L., Lin, K., Huang, L., Tseng, M., Chiu, H., Chen, R., et al. (2017) Licochalcone a Prevents Platelet Activation and Thrombus Formation through the Inhibition of PLCγ2-PKC, Akt, and MAPK Pathways. International Journal of Molecular Sciences, 18, Article No. 1500.
https://doi.org/10.3390/ijms18071500
[49]  许心蕊, 高照, 张晴玥, 等. 异甘草素通过激活PPAR-γ信号通路调控ox-LDL稳定动脉粥样硬化斑块[J]. 海南医学院学报, 2023, 29(18): 1367-1374.
[50]  Zeng, J., Liu, W., Liang, B., Shi, L., Yang, S., Meng, J., et al. (2022) Inhibitory Effect of Isoliquiritigenin in Niemann-Pick C1-Like 1-Mediated Cholesterol Uptake. Molecules, 27, Article No. 7494.
https://doi.org/10.3390/molecules27217494
[51]  Du, F., Gesang, Q., Cao, J., Qian, M., Ma, L., Wu, D., et al. (2016) Isoliquiritigenin Attenuates Atherogenesis in Apolipoprotein E-Deficient Mice. International Journal of Molecular Sciences, 17, Article No. 1932.
https://doi.org/10.3390/ijms17111932

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133