全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于纵向数部分线性模型的分位数模型平均
Quantile Model Averaging Based on Longitudinal Partial Linear Model

DOI: 10.12677/aam.2024.138348, PP. 3651-3665

Keywords: 纵向数据,部分线性模型,局部线性估计,分位数回归,模型平均
Longitudinal Data
, Partially Linear Models, Local Linear Estimation, Quantile Regression, Model Averaging

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对纵向数据部分线性回归模型中的参数估计与非参数估计问题,基于分位数回归估计方法提出了一种稳健的模型平均估计量。为了提高估计效率,采用工作相关矩阵分解和估计方程平滑法处理纵向数据的组内相关性,并通过局部线性估计方法处理模型的非参数部分,给出了模型参数与非参数估计的Newton-Raphson迭代算法。数值模拟表明,新的估计方法具有良好的估计性能。将新估计方法应用到空气质量数据的预测分析中,证明了该方法在实际应用中也具有可行性。
Based on the problem of parameter estimation and non-parametric estimation in the partial linear regression model of longitudinal data, this paper proposes a robust model average estimator based on the quantile regression estimation method. In order to improve the estimation efficiency, the working correlation matrix decomposition and estimation equation smoothing method are used to deal with the intra-group correlation of longitudinal data, and the non-parametric part of the model is processed by the local linear estimation method. The Newton-Raphson iterative algorithm for model parameter and non-parametric estimation is given. Numerical simulation shows that the new estimation method has good estimation performance. The new estimation method is applied to the prediction and analysis of air quality data, which proves that the method is also feasible in practical applications.

References

[1]  Zeger, S.L. and Diggle, P.J. (1994) Semiparametric Models for Longitudinal Data with Application to CD4 Cell Numbers in HIV Seroconverters. Biometrics, 50, 689-699.
https://doi.org/10.2307/2532783
[2]  Lin, X. and Carroll, R.J. (2001) Semiparametric Regression for Clustered Data Using Generalized Estimating Equations. Journal of the American Statistical Association, 96, 1045-1056.
https://doi.org/10.1198/016214501753208708
[3]  Hu, Z. (2004) Profile-Kernel versus Backfitting in the Partially Linear Models for Longitudinal/Clustered Data. Biometrika, 91, 251-262.
https://doi.org/10.1093/biomet/91.2.251
[4]  Fan, J. and Li, R. (2004) New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis. Journal of the American Statistical Association, 99, 710-723.
https://doi.org/10.1198/016214504000001060
[5]  田萍. 纵向数据半参数回归模型的估计理论[D]: [博士学位论文]. 北京: 北京工业大学, 2006.
[6]  Tian, R. and Xue, L. (2017) Generalized Empirical Likelihood Inference in Partial Linear Regression Model for Longitudinal Data. Statistics, 51, 988-1005.
https://doi.org/10.1080/02331888.2017.1355370
[7]  王明辉, 尹居良. 纵向数据下部分线性模型的估计与性质[J]. 数理统计与管理, 2018, 37(5): 850-863.
[8]  刘会明. 纵向数据部分线性模型的有效估计[D]: [硕士学位论文]. 上海: 上海师范大学, 2020.
[9]  Jung, S. (1996) Quasi-likelihood for Median Regression Models. Journal of the American Statistical Association, 91, 251-257.
https://doi.org/10.1080/01621459.1996.10476683
[10]  Fu, L. and Wang, Y. (2012) Quantile Regression for Longitudinal Data with a Working Correlation Model. Computational Statistics & Data Analysis, 56, 2526-2538.
https://doi.org/10.1016/j.csda.2012.02.005
[11]  Leng, C. and Zhang, W. (2012) Smoothing Combined Estimating Equations in Quantile Regression for Longitudinal Data. Statistics and Computing, 24, 123-136.
https://doi.org/10.1007/s11222-012-9358-0
[12]  Lu, X. and Fan, Z. (2014) Weighted Quantile Regression for Longitudinal Data. Computational Statistics, 30, 569-592.
https://doi.org/10.1007/s00180-014-0550-x
[13]  Lu, X. and Su, L. (2015) Jackknife Model Averaging for Quantile Regressions. Journal of Econometrics, 188, 40-58.
https://doi.org/10.1016/j.jeconom.2014.11.005
[14]  Zhang, X. and Wang, W. (2019) Optimal Model Averaging Estimation for Partially Linear Models. Statistica Sinica, 29, 693-718.
https://doi.org/10.5705/ss.202015.0392
[15]  Fang, F., Li, J. and Xia, X. (2022) Semiparametric Model Averaging Prediction for Dichotomous Response. Journal of Econometrics, 229, 219-245.
https://doi.org/10.1016/j.jeconom.2020.09.008
[16]  胡国治, 曾婕. 部分线性分位数回归模型的平均估计[J]. 安庆师范大学学报(自然科学版), 2023, 29(1): 32-36.
[17]  Hu, G., Cheng, W. and Zeng, J. (2019) Focused Information Criterion and Model Averaging for Varying-Coefficient Partially Linear Models with Longitudinal Data. Communications in StatisticsSimulation and Computation, 50, 2399-2417.
https://doi.org/10.1080/03610918.2019.1609029
[18]  Li, N., Fei, Y. and Zhang, X. (2024) Partial Linear Model Averaging Prediction for Longitudinal Data. Journal of Systems Science and Complexity, 37, 863-885.
[19]  Hendricks, W. and Koenker, R. (1992) Hierarchical Spline Models for Conditional Quantiles and the Demand for Electricity. Journal of the American Statistical Association, 87, 58-68.
https://doi.org/10.1080/01621459.1992.10475175
[20]  Lv, J., Guo, C. and Wu, J. (2018) Smoothed Empirical Likelihood Inference via the Modified Cholesky Decomposition for Quantile Varying Coefficient Models with Longitudinal Data. TEST, 28, 999-1032.
https://doi.org/10.1007/s11749-018-0616-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133