全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于GIS可视化的新疆游客行为空间特征研究
Study on the Spatial Characteristics of Xinjiang Tourists’ Behavior Based on GIS Visualization

DOI: 10.12677/sd.2024.147205, PP. 1779-1785

Keywords: 游客行为,空间特征,网络游记,核密度分析
Tourist Behavior
, Spatial Characteristics, Online Travel Notes, Kernel Density Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以新疆维吾尔自治区为研究对象,以网络游记文本为数据基础,运用ArcGIS10.8.1软件,通过核密度分析方法对新疆游客的行为空间特征进行了深入剖析。研究结果显示:1) 游客主要汇聚于北疆地区,而南疆及新疆东部地区的游客数量则相对较少。具体而言,伊犁地区、博尔塔拉蒙古自治州、乌鲁木齐市、阿勒泰地区、喀什地区以及吐鲁番市成为游客的主要聚集地。2) 游客汇集成了以博乐市的赛里木湖、巴州的巴音布鲁克景区、伊犁州新源县的那拉提草原、伊犁州昭苏县昭苏国家湿地公园、乌鲁木齐市、阿勒泰布尔津县喀纳斯、喀什市喀什古城以及吐鲁番市周边景点为中心的8个聚集区。3) 北疆地区因壮美的自然景观和便捷的交通条件,对游客更具吸引力;相比之下,南疆地区由于景区与城市间的较大距离及复杂的地理环境,其综合吸引力稍显不足,导致游客数量相对较少。
This paper takes Xinjiang Uygur Autonomous Region as the research object, takes online travel text as the data basis, uses ArcGIS10.8.1 software, and uses kernel density analysis method to deeply analyze the spatial characteristics of Xinjiang tourists’ behavior. The research results show that: 1) Tourists mainly gather in northern Xinjiang, while the number of tourists in southern Xinjiang and eastern Xinjiang is relatively small. Specifically, Ili Prefecture, Bortala Mongol Autonomous Prefecture, Urumqi City, Altay Prefecture, Kashgar Prefecture and Turpan City have become the main gathering places for tourists. 2) Tourists gathered in eight clusters centered on the Sailimu Lake in Bole City, the Bayinbuluke Scenic Area in Bayingolin Prefecture, the Nalati Grassland in Xinyuan County, Ili Prefecture, the Zhaosu National Wetland Park in Zhaosu County, Ili Prefecture, Urumqi City, Kanas in Burqin County, Altay, the Kashgar Ancient City in Kashgar City, and the surrounding attractions in Turpan City. 3) The northern Xinjiang region is more attractive to tourists due to its magnificent natural scenery and convenient transportation conditions; in contrast, the southern Xinjiang region is slightly less attractive due to the large distance between the scenic area and the city and the complex geographical environment, resulting in a relatively small number of tourists.

References

[1]  黄潇婷. 旅游者时空行为研究[M]. 北京: 中国旅游出版社, 2011.
[2]  梁嘉祺, 姜珊, 陶犁. 旅游者时空行为模式与难忘旅游体验关系研究[J]. 旅游学刊, 2021, 36(10): 98-112.
[3]  O’Connor, A., Zerger, A. and Itami, B. (2005) Geo-Temporal Tracking and Analysis of Tourist Movement. Mathematics and Computers in Simulation, 69, 135-150.
https://doi.org/10.1016/j.matcom.2005.02.036
[4]  Xia, J., Zeephongsekul, P. and Arrowsmith, C. (2009) Modelling Spatio-Temporal Movement of Tourists Using Finite Markov Chains. Mathematics and Computers in Simulation, 79, 1544-1553.
https://doi.org/10.1016/j.matcom.2008.06.007
[5]  Hamilton, K. and Alexander, M. (2017) Spatial, Temporal and Social Dimensions of a ‘Destination-in-Motion’. European Journal of Marketing, 51, 2101-2117.
https://doi.org/10.1108/ejm-04-2016-0221
[6]  Zakrisson, I. and Zillinger, M. (2012) Emotions in Motion: Tourist Experiences in Time and Space. Current Issues in Tourism, 15, 505-523.
https://doi.org/10.1080/13683500.2011.615391
[7]  刘俊, 陈佳淇, 冯冰, 等. 基于轨迹数据的遵义市红色旅游者时空行为模式研究[J]. 地球信息科学学报, 2024, 26(2): 424-439.
[8]  杨杰毅. 基于游客满意度的城市近郊旅游路线规划研究[D]: [硕士学位论文]. 重庆: 重庆交通大学, 2023.
[9]  任唤麟. 基于地理特征的跨区域线性文化遗产旅游形象策略研究[J]. 地理与地理信息科学, 2017, 33(1): 95-101.
[10]  Zheng, W., Zhou, R., Zhang, Z., Zhong, Y., Wang, S., Wei, Z., et al. (2019) Understanding the Tourist Mobility Using GPS: How Similar Are the Tourists? Tourism Management, 71, 54-66.
https://doi.org/10.1016/j.tourman.2018.09.019
[11]  易婷婷. 网络传播的西藏旅游目的地形象感知——基于旅游者游记的内容分析[J]. 消费经济, 2013, 29(4): 84-88, 92.
[12]  刘勤, 曹开军, 程咏春, 等. 新疆县市旅游城镇化响应的空间格局演变及影响因素[J]. 生态经济, 2024, 40(2): 150-155.
[13]  祁欣. 新疆旅游可持续发展研究[D]: [硕士学位论文]. 北京: 中央民族大学, 2010.
[14]  苏红霞, 张雪, 艾欣, 等. 基于UGC数据的乌兹别克斯坦国际游客行为时空特征研究[J]. 世界地理研究, 2019, 28(3): 213-222.
[15]  陈晨, 修春亮, 陈伟, 等. 基于GIS的北京地名文化景观空间分布特征及其成因[J]. 地理科学, 2014, 34(4): 420-429.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133