全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Between Quantum Mechanics and General Relativity

DOI: 10.4236/jmp.2024.158049, PP. 1199-1228

Keywords: Dark Matter and Energy, Gravitational Quanta, Graviton Standing Wave, Schwarzschild Metric, General Relativity, Quantum Physics, Unified Field Theory, Blackholes

Full-Text   Cite this paper   Add to My Lib

Abstract:

The origin of elementary particle mass is considered as a function of n-valued graviton quanta. To develop this concept we begin in a cold region of “empty space” comprised of only microscopic gravitons oscillating at angular frequency ω. From opposite directions enters a pair of stray protons. Upon colliding, heat and energy are released. Customarily, this phase and what follows afterward would be described by Quantum Chromodynamics (QCD). Instead, we argue for an intermediary step. One in which neighboring gravitons absorb discrete amounts of plane-wave energy. Captured by the graviton, the planewave becomes a standing wave, whereupon its electromagnetic energy densities are converted into gravitational quanta. Immediately thereafter an elementary particle is formed and emitted, having both mass and spin. From absorption to conversion to emission occurs in less than 3.7 × 10?16 s. During this basic unit of hybrid time, general relativity and quantum physics unite into a common set of physical laws. As additional stray protons collide the process continues. Over eons, vast regions of spacetime become populated with low-mass particles. These we recognize to be dark matter by its effects on large scale structures in the universe. Its counterpart, dark energy, arises when the conversion of gravitational quanta to particle emission is interrupted. This causes the gravitational quanta to be ejected. It is recognized by its large scale effects on the universe.

References

[1]  Aldrovandi, R. (2006) Gravity and the Quantum: Are They Reconcilable? AIP Conference Proceedings, 810, 217-228.
https://doi.org/10.1063/1.2158724
[2]  Tretkoff, E. (2005) Einstein’s Quest for a Unified Theory.
https://www.aps.org/publications/apsnews/200512/history.cfm
[3]  Le Bihan, B. and Linnemann, N. (2019) Have We Lost Spacetime on the Way? Narrowing the Gap between General Relativity and Quantum Gravity. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 65, 112-121.
https://doi.org/10.1016/j.shpsb.2018.10.010
[4]  Padmanabhan, T. (2016) Quantum Field Theory: The Why, What and How. (Graduate Texts in Physics). Springer.
https://www.amazon.com/Quantum-Field-Theory-Graduate-Physics/dp/3319281712
[5]  Bagla, J.S., Bhattacharya, K., Chakraborty, S., et al. (2021) The Life and Science of Thanu Padmanabhan. arXiv: 2110.03208.
https://doi.org/10.48550/arXiv.2110.03208
[6]  Thanu Padmanabhan Centre for Cosmology and Popularization of Science.
https://ccsp.sgtuniversity.ac.in/main/
[7]  Padmanabhan, T. (2015) Gravitation: Foundations and Frontiers. Cambridge University Press.
https://www.amazon.com/Gravitation-Foundations-Frontiers-T-Padmanabhan/dp/0521882230
[8]  Padmanabhan, T. (2002) Combining General Relativity and Quantum Theory: Points of Conflict and Contact. Classical and Quantum Gravity, 19, 3551-3566.
https://doi.org/10.1088/0264-9381/19/13/312
[9]  Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780.
https://doi.org/10.1103/physrev.47.777
[10]  Edwards, M.R. (2022) Optical Gravity in a Graviton Spacetime. Optik, 260, Article 169059.
https://doi.org/10.1016/j.ijleo.2022.169059
[11]  Britto, R., Gonzo, R. and Jehu, G.R. (2022) Graviton Particle Statistics and Coherent States from Classical Scattering Amplitudes. Journal of High Energy Physics, 2022, Article No. 214.
https://doi.org/10.1007/jhep03(2022)214
[12]  Flauger, R. and Weinberg, S. (2019) Absorption of Gravitational Waves from Distant Sources. Physical Review D, 99, Article 123030.
https://doi.org/10.1103/physrevd.99.123030
[13]  Caron-Huot, S., Li, Y., Parra-Martinez, J. and Simmons-Duffin, D. (2023) Causality Constraints on Corrections to Einstein Gravity. Journal of High Energy Physics, 2023, Article No. 122.
https://doi.org/10.1007/jhep05(2023)122
[14]  Bai, D. and Xing, Y. (2018) Higher Derivative Theories for Interacting Massless Gravitons in Minkowski Spacetime. Nuclear Physics B, 932, 15-28.
https://doi.org/10.1016/j.nuclphysb.2018.05.009
[15]  Brito, R., Cardoso, V. and Pani, P. (2013) Partially Massless Gravitons Do Not Destroy General Relativity Black Holes. Physical Review D, 87, Article 124024.
https://doi.org/10.1103/physrevd.87.124024
[16]  Palessandro, A. and Sloth, M.S. (2020) Gravitational Absorption Lines. Physical Review D, 101, Article 043504.
https://doi.org/10.1103/physrevd.101.043504
[17]  Fumagalli, J., Palma, G.A., Renaux-Petel, S., Sypsas, S., Witkowski, L.T. and Zenteno, C. (2022) Primordial Gravitational Waves from Excited States. Journal of High Energy Physics, 2022, Article No. 196.
https://doi.org/10.1007/jhep03(2022)196
[18]  Ireland, A., Profumo, S. and Scharnhorst, J. (2023) Primordial Gravitational Waves from Black Hole Evaporation in Standard and Nonstandard Cosmologies. Physical Review D, 107, Article 104021.
https://doi.org/10.1103/physrevd.107.104021
[19]  Aad, G., Abbott, B., Abbott, D.C., Abeling, K., Abidi, S.H., Aboulhorma, A., et al. (2022) A Detailed Map of Higgs Boson Interactions by the ATLAS Experiment Ten Years after the Discovery. Nature, 607, 52-59.
https://doi.org/10.1038/s41586-022-04893-w
[20]  Aitchison, I.J.R., MacManus, D.A. and Snyder, T.M. (2004) Understanding Heisenberg’s “Magical” Paper of July 1925: A New Look at the Calculational Details. American Journal of Physics, 72, 1370-1379.
https://doi.org/10.1119/1.1775243
[21]  Goenner, H. (2017) A Golden Age of General Relativity? Some Remarks on the History of General Relativity. General Relativity and Gravitation, 49, Article No. 42.
https://doi.org/10.1007/s10714-017-2203-1
[22]  Blum, A.S., Lalli, R. and Renn, J. (2016) The Renaissance of General Relativity: How and Why It Happened. Annalen der Physik, 528, 344-349.
https://doi.org/10.1002/andp.201600105
[23]  Bergmann, P.G. (1942) Introduction to the Theory of Relativity. Prentice-Hall.
[24]  Rosen, N. (1940) General Relativity and Flat Space. II. Physical Review, 57, 150-153.
https://doi.org/10.1103/physrev.57.150
[25]  Gupta, S.N. (1952) Quantization of Einstein’s Gravitational Field: General Treatment. Proceedings of the Physical Society. Section A, 65, 608-619.
https://doi.org/10.1088/0370-1298/65/8/304
[26]  Fierz, M. and Pauli, W.E. (1939) On Relativistic Wave Equations for Particles of Arbitrary Spin in an Electromagnetic Field. Proceedings of the Royal Society A, 173, 211-232.
https://doi.org/10.1098/rspa.1939.0140
[27]  Blasi, A. and Maggiore, N. (2017) Massive Gravity and Fierz-Pauli Theory. The European Physical Journal C, 77, Article No. 614.
https://doi.org/10.1140/epjc/s10052-017-5205-y
[28]  Hou, M., Xu, H. and Ong, Y.C. (2020) Hawking Evaporation of Black Holes in Massive Gravity. The European Physical Journal C, 80, Article No. 1090.
https://doi.org/10.1140/epjc/s10052-020-08678-1
[29]  Crispino, L.C.B. and Kennefick, D.J. (2019) A Hundred Years of the First Experimental Test of General Relativity. Nature Physics, 15, 416-419.
https://doi.org/10.1038/s41567-019-0519-3
[30]  de Rham, C. and Gabadadze, G. (2010) Generalization of the Fierz-Pauli Action. Physical Review D, 82, Article 044020.
https://doi.org/10.1103/physrevd.82.044020
[31]  Gao, Q. (2022) Constraint on the Mass of Graviton with Gravitational Waves. Science China Physics, Mechanics & Astronomy, 66, Article No. 220411.
https://doi.org/10.1007/s11433-022-1971-9
[32]  Abbott, B. P., et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, Article 061102.
https://doi.org/10.1103/PhysRevLett.116.061102
[33]  Oikonomou, V.K. and Fronimos, F.P. (2020) A Nearly Massless Graviton in Einstein-Gauss-Bonnet Inflation with Linear Coupling Implies Constant-Roll for the Scalar Field. Europhysics Letters, 131, Article 30001.
https://doi.org/10.1209/0295-5075/131/30001
[34]  Hertzberg, M.P. and Litterer, J.A. (2020) Symmetries from Locality. III. Massless Spin-2 Gravitons and Time Translations. Physical Review D, 102, Article 085007.
https://doi.org/10.1103/physrevd.102.085007
[35]  Aoki, K. and Maeda, K. (2018) Condensate of Massive Graviton and Dark Matter. Physical Review D, 97, Article 044002.
https://doi.org/10.1103/physrevd.97.044002
[36]  Blas, D., Deffayet, C. and Garriga, J. (2007) Bigravity and Lorentz-Violating Massive Gravity. Physical Review D, 76, Article 104036.
https://doi.org/10.1103/physrevd.76.104036
[37]  Kibble, T.W.B. (2014) The Standard Model of Particle Physics. arXiv: 1412.4094.
https://doi.org/10.48550/arXiv.1412.4094
[38]  Gupta, S.N. (1952) Quantization of Einstein’s Gravitational Field: General Treatment. Proceedings of the Physical Society. Section A, 65, 608-619.
https://doi.org/10.1088/0370-1298/65/8/304
[39]  Doboszewski, J. and Linnemann, N. (2018) How Not to Establish the Non-Renormalizability of Gravity. Foundations of Physics, 48, 237-252.
https://doi.org/10.1007/s10701-017-0136-x
[40]  Kanno, S., Soda, J. and Tokuda, J. (2021) Indirect Detection of Gravitons through Quantum Entanglement. Physical Review D, 104, Article 083516.
https://doi.org/10.1103/physrevd.104.083516
[41]  Barman, B., Bernal, N., Xu, Y. and Zapata, Ó. (2023) Gravitational Wave from Graviton Bremsstrahlung during Reheating. Journal of Cosmology and Astroparticle Physics, 2023, Article 019.
https://doi.org/10.1088/1475-7516/2023/05/019
[42]  De Felice, A., Mukohyama, S. and Pookkillath, M.C. (2021) Minimal Theory of Massive Gravity and Constraints on the Graviton Mass. Journal of Cosmology and Astroparticle Physics, 2021, Article 011.
https://doi.org/10.1088/1475-7516/2021/12/011
[43]  Emam, M.H. (2008) “So What Will You Do If String Theory Is Wrong?” American Journal of Physics, 76, 605-606.
https://doi.org/10.1119/1.2919735
[44]  Dyson, F. (2013) Is a Graviton Detectable? International Journal of Modern Physics A, 28, Article 1330041.
https://doi.org/10.1142/s0217751x1330041x
[45]  Carney, D., Domcke, V. and Rodd, N.L. (2024) Graviton Detection and the Quantization of Gravity. Physical Review D, 109, Article 044009.
https://doi.org/10.1103/physrevd.109.044009
[46]  Anninos, P., Rothman, T. and Palessandro, A. (2024) Graviton-Photon Oscillations in an Expanding Universe. Physics of the Dark Universe, 44, Article 101480.
https://doi.org/10.1016/j.dark.2024.101480
[47]  Gerard’t, H. (2016) How Quantization of Gravity Leads to a Discrete Space-Time. Journal of Physics: Conference Series, 701, Article 012014.
https://doi.org/10.1088/1742-6596/701/1/012014
[48]  Christensen, W.J. (2007) Normal Coordinates Describing Coupled Oscillations in the Gravitational Field. General Relativity and Gravitation, 39, 105-110.
https://doi.org/10.1007/s10714-006-0360-8
[49]  Goldstein, H., Poole, C. and Safko, J. (2002) Classical Mechanics. Addison Wesley. 250.
[50]  Mei, T. (2008) On the Vierbein Formalism of General Relativity. General Relativity and Gravitation, 40, 1913-1945.
https://doi.org/10.1007/s10714-008-0613-9
[51]  Witten, E. (2022) A Note on Complex Spacetime Metrics. In: Niemi, A., Phua, K.K. and Shapere, A., Eds., Frank Wilczek, World Scientific, 245-280.
https://doi.org/10.1142/9789811251948_0020
[52]  Visser, M. (2022) Feynman’s iϵ Prescription, Almost Real Spacetimes, and Acceptable Complex Spacetimes. Journal of High Energy Physics, 2022, Article No. 129.
https://doi.org/10.1007/jhep08(2022)129
[53]  Witten, E. (2021) Complex Metrics on Spacetime. Institut des Hautes Études Scientifiques (IHÉS), YouTube.
https://www.youtube.com/watch?v=8NF5Xm-zfkA
[54]  Newton, I. (1971) The Principia. California Press, 7.
[55]  Unruh, W.G. (1993) Time Gravity and Quantum Mechanics. arXiv: gr-qc/9312027, General Relativity and Quantum Cosmology.
https://arxiv.org/abs/gr-qc/9312027
[56]  Dias, E.O. (2021) Quantum Formalism for Events and How Time Can Emerge from Its Foundations. Physical Review A, 103, Article 012219.
https://doi.org/10.1103/physreva.103.012219
[57]  Macías, A. and Camacho, A. (2008) On the Incompatibility between Quantum Theory and General Relativity. Physics Letters B, 663, 99-102.
https://doi.org/10.1016/j.physletb.2008.03.052
[58]  DeRocco, W. and Dror, J.A. (2024) Using Pulsar Parameter Drifts to Detect Subnanohertz Gravitational Waves. Physical Review Letters, 132, Article 101403.
https://doi.org/10.1103/physrevlett.132.101403
[59]  Chicone, C. and Mashhoon, B. (2013) Linearized Gravitational Waves in Nonlocal General Relativity. Physical Review D, 87, Article 064015.
https://doi.org/10.1103/physrevd.87.064015
[60]  Weinberg, S. (1997) The Search for Unity: Notes for a History of Quantum Field Theory. Daedalus, 106, 17-35.
https://www.jstor.org/stable/20024506
[61]  Méthot, A.A. (2006) On Local-Hidden-Variable No-Go Theorems. Canadian Journal of Physics, 84, 633-638.
https://doi.org/10.1139/p06-036
[62]  Cooperstock, F.I. and Dupre, M.J. (2013) Covariant Energy-Momentum and an Uncertainty Principle for General Relativity. Annals of Physics, 339, 531-541.
https://doi.org/10.1016/j.aop.2013.08.009
[63]  Busch, P. (2008) The Time-Energy Uncertainty Relation. In: Muga, J., Mayato, R.S. and Egusquiza, Í., Eds., Time in Quantum Mechanics. Springer, 73-105.
https://doi.org/10.1007/978-3-540-73473-4_3
[64]  Gibbons, G.W. and Hawking, S.W. (1977) Action Integrals and Partition Functions in Quantum Gravity. Physical Review D, 15, 2752-2756.
https://doi.org/10.1103/physrevd.15.2752
[65]  Jonas, C., Lehners, J. and Quintin, J. (2022) Uses of Complex Metrics in Cosmology. Journal of High Energy Physics, 2022, Article No. 284.
https://doi.org/10.1007/jhep08(2022)284
[66]  Einstein, A. (1945) A Generalization of the Relativistic Theory of Gravitation. The Annals of Mathematics, 46, 578-584.
https://doi.org/10.2307/1969197
[67]  Antoci, S. (1996) Microscopic Fields and Macroscopic Averages in Einstein’s Unified Field Theory. Annales de la Fondation Louis de Broglie, 21, 11-38.
[68]  Fang, J., Christensen, W.J. and Nakashima, M.M. (1996) A Generalized Consistency Condition for Massless Fields. Letters in Mathematical Physics, 38, 213-216.
https://doi.org/10.1007/bf00398322
[69]  Gross, F., Klempt, E., Brodsky, S.J., et al. (2023) 50 Years of Quantum Chromodynamics. The European Physical Journal C, 83, Article No. 1125.
https://doi.org/10.1140/epjc/s10052-023-11949-2
[70]  Hornyak, I. and Kruppa, A.T. (2013) Coulomb-Distorted Plane Wave: Partial Wave Expansion and Asymptotic Forms. Journal of Mathematical Physics, 54, Article 053502.
https://doi.org/10.1063/1.4803027
[71]  Cárdenas, V.H. (2012) Dark Energy, Matter Creation and Curvature. The European Physical Journal C, 72, Article No. 2149.
https://doi.org/10.1140/epjc/s10052-012-2149-0
[72]  Farnes, J.S. (2018) A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified ΛCDM Framework. Astronomy & Astrophysics, 620, A92.
https://doi.org/10.1051/0004-6361/201832898
[73]  Mishra, S.S. and Sahni, V. (2021) Unifying Dark Matter and Dark Energy with Non-Canonical Scalars. The European Physical Journal C, 81, Article No. 625.
https://doi.org/10.1140/epjc/s10052-021-09433-w
[74]  Akhavan, O. (2022) The Universe Creation by Electron Quantum Black Holes. Acta Scientific Applied Physics, 2, 34-45.
https://actascientific.com/ASAP/pdf/ASAP-02-0046.pdf
[75]  Karami-Fard, M., Tanhayi, M.R. and Takook, M.V. (2015) Dark Energy in Weyl-f(R) Gravity. International Journal of Theoretical Physics, 55, 722-729.
https://doi.org/10.1007/s10773-015-2709-9
[76]  W.M. KECK Observatory News (2023) Strange New Luminous Fast Blue Optical Transient Has Astronomers in Awe.
https://www.keckobservatory.org/luminous-fbot/
[77]  Pearson, E. and Lintott, C. (2023) One of the Universe’s Brightest Outbursts Has Deepened a Cosmic Mystery.
https://www.skyatnightmagazine.com/news/luminous-fast-blue-optical-transients
[78]  Chrimes, A.A., Jonker, P.G., Levan, A.J., Coppejans, D.L., Gaspari, N., Gompertz, B.P., et al. (2023) AT2023fhn (the Finch): A Luminous Fast Blue Optical Transient at a Large Offset from Its Host Galaxy. Monthly Notices of the Royal Astronomical Society: Letters, 527, L47-L53.
https://doi.org/10.1093/mnrasl/slad145
[79]  Metzger, B.D. and Perley, D.A. (2023) Dust Echoes from Luminous Fast Blue Optical Transients. The Astrophysical Journal, 944, Article 74.
https://doi.org/10.3847/1538-4357/acae89
[80]  NASA Hubble Mission Team (2023) NASA’s Hubble Finds Bizarre Explosion in Unexpected Place.
https://science.nasa.gov/missions/hubble/nasas-hubble-finds-bizarre-explosion-in-unexpected-place/
[81]  Choi, K., Gong, J., Joh, J., Park, W. and Seto, O. (2023) Light Cold Dark Matter from Non-Thermal Decay. Physics Letters B, 845, Article 138126.
https://doi.org/10.1016/j.physletb.2023.138126
[82]  Pontzen, A. and Governato, F. (2014) Cold Dark Matter Heats Up. Nature, 506, 171-178.
https://doi.org/10.1038/nature12953
[83]  Yin, W. (2023) Thermal Production of Cold “Hot Dark Matter” around eV. Journal of High Energy Physics, 2023, Article No. 180.
https://doi.org/10.1007/jhep05(2023)180
[84]  Peebles, P.J.E. (2014) Dark Matter. Proceedings of the National Academy of Sciences, 112, 12246-12248.
https://doi.org/10.1073/pnas.1308786111
[85]  Karachentsev, I.D. and Telikova, K.N. (2018) Stellar and Dark Matter Density in the Local Universe. Astronomische Nachrichten, 339, 615-622.
https://doi.org/10.1002/asna.201813520
[86]  Li, P., Lelli, F., McGaugh, S.S., Starkman, N. and Schombert, J.M. (2018) A Constant Characteristic Volume Density of Dark Matter Haloes from SPARC Rotation Curve Fits. Monthly Notices of the Royal Astronomical Society, 482, 5106-5124.
https://doi.org/10.1093/mnras/sty2968
[87]  Goldhaber, A.S. and Nieto, M.M. (2010) Photon and Graviton Mass Limits. Reviews of Modern Physics, 82, 939-979.
https://doi.org/10.1103/revmodphys.82.939
[88]  Finn, L.S. and Sutton, P.J. (2002) Bounding the Mass of the Graviton Using Binary Pulsar Observations. Physical Review D, 65, Article 044022.
https://doi.org/10.1103/physrevd.65.044022
[89]  Ball, P. (2019) Limits on the Graviton from Planetary Orbits. A New Analysis Improves on Estimates of the Upper Limit on the Mass of the Graviton Particle Using Solar System Data. APS Physics, 12, Article 113.
https://physics.aps.org/articles/v12/113#:~:text=The%20researchers%20then%20looked%20for,eV%2C%20with%2090%25%20confidence
[90]  NASA WMAP (2024) Universe 101.
https://wmap.gsfc.nasa.gov/universe/uni_matter.html
[91]  Young, B. (2017) Erratum to: A Survey of Dark Matter and Related Topics in Cosmology. Frontiers of Physics, 12, Article No. 121202.
https://doi.org/10.1007/s11467-017-0680-z
[92]  Lieu, R. (2018) Exclusion of Standard ω Gravitons by LIGO Observation. Classical and Quantum Gravity, 35, 19LT02.
https://doi.org/10.1088/1361-6382/aadb30
[93]  The CMS Collaboration, Tumasyan, A., Adam, W., et al. (2021) Measurement of the Top Quark Mass Using Events with a Single Reconstructed Top Quark in pp Collisions at = 13 TeV. Journal of High Energy Physics, 2021, Article No. 161.
https://doi.org/10.1007/JHEP12(2021)161
[94]  Hrynevich, A. (2023) The Three-Jets and Z+ Jets Cross-Section Measurements in Proton-Proton Collisions Data Collected with the ATLAS Experiment at the LHC.
https://cds.cern.ch/record/2865496/files/CERN-THESIS-2023-104.pdf
[95]  The ATLAS Collaboration (2023) Measurement of the Higgs Boson Mass in the H → ZZ → 4ℓ Decay Channel Using 139 fb−1 of =13 TeV pp Collisions Recorded by the ATLAS Detector at the LHC. Physics Letters B, 843, Article 137880.
https://doi.org/10.1016/j.physletb.2023.137880
[96]  Bub, J. (2023) Quantum Entanglement and Information.
https://plato.stanford.edu/archives/sum2023/entries/qt-entangle/
[97]  Borzeszkowski, H.V. and Mensky, M.B. (2000) EPR Effect in Gravitational Field: Nature of Non-Locality. Physics Letters A, 269, 197-203.
https://doi.org/10.1016/s0375-9601(00)00230-9
[98]  Ding, R. and Liao, Y. (2012) Spin 3/2 Particle as a Dark Matter Candidate: An Effective Field Theory Approach. Journal of High Energy Physics, 2012, Article No. 54.
https://doi.org/10.1007/jhep04(2012)054
[99]  Kiosses, V. (2014) Quantum Entanglement as an Aspect of Pure Spinor Geometry. Journal of Physics A: Mathematical and Theoretical, 47, Article 405301.
https://doi.org/10.1088/1751-8113/47/40/405301
[100]  Cahill, K. (2021) Spinors of Spin-One-Half Fields. European Journal of Physics, 42, Article 025407.
https://doi.org/10.1088/1361-6404/abcb54
[101]  Liu, C. and Majid, S. (2022) Quantum Geodesics on Quantum Minkowski Spacetime. Journal of Physics A: Mathematical and Theoretical, 55, Article 424003.
https://doi.org/10.1088/1751-8121/ac7593

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133