|
关于方程Z(n2)=φ10(SL(n))的可解性研究
|
Abstract:
本文利用伪Smarandache函数、Smarandache LCM函数和广义Euler函数的基本性质,以及一些初等方法和技巧给出φ10(pα)的准确计算公式,其中p是素数,且α是正整数。由此,我们讨论数论函数方程Z(n2)=φ10(SL(n))的可解性,结论是:该方程无正整数解。
This paper applies the basic properties of pseudo-Smarandache, Smarandache LCM and generalized functions, as well as some elementary methods and techniques to obtain an accurate calculation formulaφ10(pα), where p is a prime number andαis a positive integer. Based on this formula, We discuss number- theoretic functional equationsZ(n2)=φ10(SL(n)). It is concluded that there is no positive integer solution to this equation.
[1] | 柯召, 孙琦. 数论函数[M]. 北京: 高等教育出版社, 2021: 33. |
[2] | Lehmer, E. (1938) On Congruences Involving Bernoulli Numbers and the Quotients of Fermat and Wilson. The Annals of Mathematics, 39, 350-360. https://doi.org/10.2307/1968791 |
[3] | Cai, T. (2002) A Congruence Involving the Quotients of Euler and Its Applications (I). Acta Arithmetica, 103, 313-320. https://doi.org/10.4064/aa103-4-1 |
[4] | Cai, T.X., Fu, X.D. and Zhou, X. (2007) A Congruence Involving the Quotients of Euler and Its Applications (II). Acta Arithmetica, 130, 203-214. https://doi.org/10.4064/aa130-3-1 |
[5] | Murthy, A. (2000) Some New Smarandache Sequences, Functions and Partitions. Smarandache Notions Journal, 11, 179-183. |
[6] | Sandor, J. (2002) On a Dual of the Pseudo Smarandache Function. Smarandache Notions Journal, 13, 18-23. |
[7] | 范盼红. 对Catalan数的性质以及关于Smarandache函数的几个方程的研究[D]: [硕士学位论文]. 西安: 西北大学, 2012. |
[8] | 鲁伟阳. 一类包含伪Smarandache函数与Euler函数的方程[J]. 河南科学, 2013, 31(10): 1597-1599. |
[9] | 张利霞, 赵西卿, 郭瑞. 关于数论函数方程的可解性[J]. 江汉大学学报(自然科学版), 2016, 44(1): 18-21. |
[10] | 朱杰, 廖群英. 方程的可解性[J]. 数学进展, 2019, 48(5): 541-554. |
[11] | 李改利, 高丽, 戴妍百, 等. 一类包含Smarandache LCM函数与广义欧拉函数的方程[J]. 湖北大学学报(自然科学版), 2023, 45(2): 181-187. |
[12] | 杨张媛, 赵西卿, 白继文. 两个数论函数方程解的探讨[J]. 江西科学, 2018, 36(4): 579-581. |
[13] | 马荣. Smarandache函数及其相关问题研究[M]: 哥伦布: 教育出版社, 2012. |
[14] | 高丽, 赵祈芬. 一类包含伪Smarandache函数与欧拉函数方程[J]. 河南科学, 2017, 35(2): 180-183. |