|
维生素D与结直肠癌的相关性及作用机制
|
Abstract:
维生素D传统上被认为对体内钙和磷平衡有影响,但最近的证据强调了它对结直肠癌(Colorectal Cancer, CRC)的保护作用。本文综述了维生素D在预防结直肠癌中的作用,并探讨了维生素D对结直肠癌的影响机制。我们从PubMed和Web of Science中检索了维生素D在结直肠癌预防和治疗中的作用和机制。维生素D在结直肠癌的防治中发挥着越来越重要的作用,然而,维生素D适当剂量的选择是其在预防结直肠癌作用中有争议的部分。1α,25-二羟基维生素D3 [1,25(OH)2D3]通过多种信号通路发挥抗CRC作用,包括抑制增殖、诱导分化和凋亡、抑制转移和血管生成。此外,在肿瘤微环境(Tumor Microenvironment, TME)中,维生素D可以作用于CRC相关的间质成纤维细胞和CRC干细胞,发挥抗肿瘤作用。它还可以通过调节肠道微生物群,促进肿瘤抑制。维生素D对CRC的有效预防作用可以指导维生素D的合理使用,并为未来临床试验的合理设计和潜在机制的研究提供信息。
While vitamin D is traditionally acknowledged of effects on homeostasis and phosphorus, recent evidence has highlighted its protective effect against colorectal cancer (CRC). The review investigates vitamin D function in CRC preventing and discusses mechanisms by which it affects CRC. Vitamin D role and mechanism in CRC prevention and therapy were searched from PubMed and Web of Science. Vitamin D plays an increasingly significant role in CRC prevention and treatment. However, its controversial role in CRC prevention depends, in part, on the selection of appropriate doses. 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] exhibits anti-CRC effects through various signalling pathways, involving suppressing proliferation, inducting differentiation and apoptosis, and inhibiting metastasis and angiogenesis. Moreover, within the tumour microenvironment (TME), vitamin D can act on CRC-associated stromal fibroblasts and CRC stem cells to exert antitumour effects. It may also regulate the gut microbiota to promote tumour repression. Vitamin D has beneficial preventive effects against colorectal cancer. These findings can guide vitamin D using appropriately and inform rational design of future clinical trials and research on the underlying mechanisms.
[1] | Siegel, R.L., Wagle, N.S., Cercek, A., Smith, R.A. and Jemal, A. (2023) Colorectal Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 233-254. https://doi.org/10.3322/caac.21772 |
[2] | Zhou, E. and Rifkin, S. (2021) Colorectal Cancer and Diet. Gastroenterology Clinics of North America, 50, 101-111. https://doi.org/10.1016/j.gtc.2020.10.012 |
[3] | Peixoto, R.D., de Carvalho Oliveira, L.J., Passarini, T.d.M., Andrade, A.C., Diniz, P.H., Prolla, G., et al. (2022) Vitamin D and Colorectal Cancer—A Practical Review of the Literature. Cancer Treatment and Research Communications, 32, Article ID: 100616. https://doi.org/10.1016/j.ctarc.2022.100616 |
[4] | Barbáchano, A., Fernández-Barral, A., Ferrer-Mayorga, G., Costales-Carrera, A., Larriba, M.J. and Mu?oz, A. (2017) The Endocrine Vitamin D System in the Gut. Molecular and Cellular Endocrinology, 453, 79-87. https://doi.org/10.1016/j.mce.2016.11.028 |
[5] | Mithal, A., Wahl, D.A., Bonjour, J.P., Burckhardt, P., Dawson-Hughes, B., et al. (2009) Global Vitamin D Status and Determinants of Hypovitaminosis D. Osteoporosis International, 20, 1807-1820. https://doi.org/10.1007/s00198-009-0954-6 |
[6] | Mu?oz, A. and Grant, W.B. (2022) Vitamin D and Cancer: An Historical Overview of the Epidemiology and Mechanisms. Nutrients, 14, Article 1448. https://doi.org/10.3390/nu14071448 |
[7] | Zhou, J., Ge, X., Fan, X., Wang, J., Miao, L. and Hang, D. (2021) Associations of Vitamin D Status with Colorectal Cancer Risk and Survival. International Journal of Cancer, 149, 606-614. https://doi.org/10.1002/ijc.33580 |
[8] | Barry, E.L., Peacock, J.L., Rees, J.R., Bostick, R.M., Robertson, D.J., Bresalier, R.S., et al. (2017) Vitamin D Receptor Genotype, Vitamin D3 Supplementation, and Risk of Colorectal Adenomas. JAMA Oncology, 3, 628-635. https://doi.org/10.1001/jamaoncol.2016.5917 |
[9] | Li, J., Qin, S., Zhang, S., Lu, Y., Shen, Q., Cheng, L., et al. (2023) Serum Vitamin D Concentration, Vitamin D-Related Polymorphisms, and Colorectal Cancer Risk. International Journal of Cancer, 153, 278-289. https://doi.org/10.1002/ijc.34521 |
[10] | Gibbs, D.C., Barry, E.L., Fedirko, V., Baron, J.A. and Bostick, R.M. (2023) Impact of Common Vitamin D—Binding Protein Isoforms on Supplemental Vitamin D3 and/or Calcium Effects on Colorectal Adenoma Recurrence Risk. JAMA Oncology, 9, 546-551. https://doi.org/10.1001/jamaoncol.2022.6924 |
[11] | Hernández-Alonso, P., Boughanem, H., Canudas, S., Becerra-Tomás, N., Fernández de la Puente, M., Babio, N., et al. (2021) Circulating Vitamin D Levels and Colorectal Cancer Risk: A Meta-analysis and Systematic Review of Case-Control and Prospective Cohort Studies. Critical Reviews in Food Science and Nutrition, 63, 1-17. https://doi.org/10.1080/10408398.2021.1939649 |
[12] | Ma, Y., Zhang, P., Wang, F., Yang, J., Liu, Z. and Qin, H. (2011) Association between Vitamin D and Risk of Colorectal Cancer: A Systematic Review of Prospective Studies. Journal of Clinical Oncology, 29, 3775-3782. https://doi.org/10.1200/jco.2011.35.7566 |
[13] | Mohr, S.B., Gorham, E.D., Kim, J., Hofflich, H., Cuomo, R.E. and Garland, C.F. (2015) Could Vitamin D Sufficiency Improve the Survival of Colorectal Cancer Patients? The Journal of Steroid Biochemistry and Molecular Biology, 148, 239-244. https://doi.org/10.1016/j.jsbmb.2014.12.010 |
[14] | Boughanem, H., Canudas, S., Hernandez-Alonso, P., Becerra-Tomás, N., Babio, N., Salas-Salvadó, J., et al. (2021) Vitamin D Intake and the Risk of Colorectal Cancer: An Updated Meta-analysis and Systematic Review of Case-Control and Prospective Cohort Studies. Cancers, 13, Article 2814. https://doi.org/10.3390/cancers13112814 |
[15] | McCullough, M.L., Zoltick, E.S., Weinstein, S.J., Fedirko, V., Wang, M., Cook, N.R., et al. (2018) Circulating Vitamin D and Colorectal Cancer Risk: An International Pooling Project of 17 Cohorts. JNCI: Journal of the National Cancer Institute, 111, 158-169. https://doi.org/10.1093/jnci/djy087 |
[16] | Huang, D., Lei, S., Wu, Y., Weng, M., Zhou, Y., Xu, J., et al. (2020) Additively Protective Effects of Vitamin D and Calcium against Colorectal Adenoma Incidence, Malignant Transformation and Progression: A Systematic Review and Meta-Analysis. Clinical Nutrition, 39, 2525-2538. https://doi.org/10.1016/j.clnu.2019.11.012 |
[17] | Kimball, S.M. and Holick, M.F. (2020) Official Recommendations for Vitamin D through the Life Stages in Developed Countries. European Journal of Clinical Nutrition, 74, 1514-1518. https://doi.org/10.1038/s41430-020-00706-3 |
[18] | Bischoff-Ferrari, H.A., Giovannucci, E., Willett, W.C., Dietrich, T. and Dawson-Hughes, B. (2006) Estimation of Optimal Serum Concentrations of 25-Hydroxyvitamin D for Multiple Health Outcomes. The American Journal of Clinical Nutrition, 84, 18-28. https://doi.org/10.1093/ajcn/84.1.18 |
[19] | Gorham, E.D., Garland, C.F., Garland, F.C., Grant, W.B., Mohr, S.B., Lipkin, M., et al. (2007) Optimal Vitamin D Status for Colorectal Cancer Prevention. American Journal of Preventive Medicine, 32, 210-216. https://doi.org/10.1016/j.amepre.2006.11.004 |
[20] | Wu, G., Xue, M., Zhao, Y., Han, Y., Zhang, S., Zhang, J., et al. (2020) Low Circulating 25-hydroxyvitamin D Level Is Associated with Increased Colorectal Cancer Mortality: A Systematic Review and Dose-Response Meta-Analysis. Bioscience Reports, 40, BSR20201008. https://doi.org/10.1042/bsr20201008 |
[21] | Lopez-Caleya, J.F., Ortega-Valín, L., Fernández-Villa, T., Delgado-Rodríguez, M., Martín-Sánchez, V. and Molina, A.J. (2021) The Role of Calcium and Vitamin D Dietary Intake on Risk of Colorectal Cancer: Systematic Review and Meta-Analysis of Case-Control Studies. Cancer Causes & Control, 33, 167-182. https://doi.org/10.1007/s10552-021-01512-3 |
[22] | Kim, H., Lipsyc-Sharf, M., Zong, X., Wang, X., Hur, J., Song, M., et al. (2021) Total Vitamin D Intake and Risks of Early-Onset Colorectal Cancer and Precursors. Gastroenterology, 161, 1208-1217.E9. https://doi.org/10.1053/j.gastro.2021.07.002 |
[23] | Wu, X., Hu, W., Lu, L., Zhao, Y., Zhou, Y., Xiao, Z., et al. (2019) Repurposing Vitamin D for Treatment of Human Malignancies via Targeting Tumor Microenvironment. Acta Pharmaceutica Sinica B, 9, 203-219. https://doi.org/10.1016/j.apsb.2018.09.002 |
[24] | Grau, M.V. (2003) Vitamin D, Calcium Supplementation, and Colorectal Adenomas: Results of a Randomized Trial. Cancer Spectrum Knowledge Environment, 95, 1765-1771. https://doi.org/10.1093/jnci/djg110 |
[25] | Scragg, R., Khaw, K., Toop, L., Sluyter, J., Lawes, C.M.M., Waayer, D., et al. (2018) Monthly High-Dose Vitamin D Supplementation and Cancer Risk. JAMA Oncology, 4, e182178. https://doi.org/10.1001/jamaoncol.2018.2178 |
[26] | El-Shemi, A.G., Refaat, B., Kensara, O.A., Mohamed, A.M., Idris, S. and Ahmad, J. (2016) Paricalcitol Enhances the Chemopreventive Efficacy of 5-Fluorouracil on an Intermediate-term Model of Azoxymethane-Induced Colorectal Tumors in Rats. Cancer Prevention Research, 9, 491-501. https://doi.org/10.1158/1940-6207.capr-15-0439 |
[27] | Gallagher, J.C. and Rosen, C.J. (2023) Vitamin D: 100 Years of Discoveries, Yet Controversy Continues. The Lancet Diabetes & Endocrinology, 11, 362-374. https://doi.org/10.1016/s2213-8587(23)00060-8 |
[28] | Evans, T.R.J., Colston, K.W., Lofts, F.J., Cunningham, D., Anthoney, D.A., Gogas, H., et al. (2002) A Phase Ii Trial of the Vitamin D Analogue Seocalcitol (eb1089) in Patients with Inoperable Pancreatic Cancer. British Journal of Cancer, 86, 680-685. https://doi.org/10.1038/sj.bjc.6600162 |
[29] | Aslam, A., Ahmad, J., Baghdadi, M.A., Idris, S., Almaimani, R., Alsaegh, A., et al. (2021) Chemopreventive Effects of Vitamin D3 and Its Analogue, Paricalcitol, in Combination with 5-fluorouracil Against Colorectal Cancer: The Role of Calcium Signalling Molecules. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1867, Article ID: 166040. https://doi.org/10.1016/j.bbadis.2020.166040 |
[30] | Vaughan-Shaw, P.G., Blackmur, J.P., Grimes, G., Ooi, L., Ochocka-Fox, A.M., Dunbar, K., et al. (2021) Vitamin D Treatment Induces in Vitro and ex Vivo Transcriptomic Changes Indicating Anti-Tumor Effects. The FASEB Journal, 36, e22082. https://doi.org/10.1096/fj.202101430rr |
[31] | Ferrer-Mayorga, G., Larriba, M.J., Crespo, P. and Mu?oz, A. (2019) Mechanisms of Action of Vitamin D in Colon Cancer. The Journal of Steroid Biochemistry and Molecular Biology, 185, 1-6. https://doi.org/10.1016/j.jsbmb.2018.07.002 |
[32] | Deeb, K.K., Trump, D.L. and Johnson, C.S. (2007) Vitamin D Signalling Pathways in Cancer: Potential for Anticancer Therapeutics. Nature Reviews Cancer, 7, 684-700. https://doi.org/10.1038/nrc2196 |
[33] | Bhoora, S. and Punchoo, R. (2020) Policing Cancer: Vitamin D Arrests the Cell Cycle. International Journal of Molecular Sciences, 21, Article 9296. https://doi.org/10.3390/ijms21239296 |
[34] | Tong, W.M., Kállay, E., Hofer, H., Hulla, W., Manhardt, T., Peterlik, M., et al. (1998) Growth Regulation of Human Colon Cancer Cells by Epidermal Growth Factor and 1, 25-dihydroxyvitamin D3 Is Mediated by Mutual Modulation of Receptor Expression. European Journal of Cancer, 34, 2119-2125. https://doi.org/10.1016/s0959-8049(98)00267-6 |
[35] | Oh, Y.S., Kim, E.J., Schaffer, B.S., Kang, Y.H., Binderup, L., MacDonald, R.G., et al. (2001) Synthetic Low-Calcaemic Vitamin D3 Analogues Inhibit Secretion of Insulin-Like Growth Factor Ii and Stimulate Production of Insulin-Like Growth Factor-Binding Protein-6 in Conjunction with Growth Suppression of Ht-29 Colon Cancer Cells. Molecular and Cellular Endocrinology, 183, 141-149. https://doi.org/10.1016/s0303-7207(01)00598-6 |
[36] | Chen, A., Davis, B.H., Sitrin, M.D., Brasitus, T.A. and Bissonnette, M. (2002) Transforming Growth Factor-β1 Signaling Contributes to Caco-2 Cell Growth Inhibition Induced by 1, 25(OH)2D3. American Journal of Physiology-Gastrointestinal and Liver Physiology, 283, G864-G874. https://doi.org/10.1152/ajpgi.00524.2001 |
[37] | Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., et al. (2022) Wnt/β-catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7, Article No. 3. https://doi.org/10.1038/s41392-021-00762-6 |
[38] | Nusse, R. and Clevers, H. (2017) Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 169, 985-999. https://doi.org/10.1016/j.cell.2017.05.016 |
[39] | Larriba, M., González-Sancho, J., Barbáchano, A., Niell, N., Ferrer-Mayorga, G. and Mu?oz, A. (2013) Vitamin D Is a Multilevel Repressor of Wnt/b-Catenin Signaling in Cancer Cells. Cancers, 5, 1242-1260. https://doi.org/10.3390/cancers5041242 |
[40] | Song, L., Li, Y., He, B. and Gong, Y. (2015) Development of Small Molecules Targeting the Wnt Signaling Pathway in Cancer Stem Cells for the Treatment of Colorectal Cancer. Clinical Colorectal Cancer, 14, 133-145. https://doi.org/10.1016/j.clcc.2015.02.001 |
[41] | Oliveira, L.F.S., Predes, D., Borges, H.L. and Abreu, J.G. (2022) Therapeutic Potential of Naturally Occurring Small Molecules to Target the Wnt/β-catenin Signaling Pathway in Colorectal Cancer. Cancers, 14, Article 403. https://doi.org/10.3390/cancers14020403 |
[42] | Ordo?n?ez-Mora?n, P., Larriba, M.J., Pa?lmer, H.G., Valero, R.A., Barba?chano, A., Dun?ach, M., et al. (2008) Rhoa-Rock and P38MAPK-MSK1 Mediate Vitamin D Effects on Gene Expression, Phenotype, and Wnt Pathway in Colon Cancer Cells. The Journal of Cell Biology, 183, 697-710. https://doi.org/10.1083/jcb.200803020 |
[43] | Ordó?ez-Morán, P., álvarez-Díaz, S., Valle, N., Larriba, M.J., Bonilla, F. and Mu?oz, A. (2010) The Effects of 1, 25-dihydroxyvitamin D3 on Colon Cancer Cells Depend on RhoA-ROCK-P38MAPK-MSK Signaling. The Journal of Steroid Biochemistry and Molecular Biology, 121, 355-361. https://doi.org/10.1016/j.jsbmb.2010.02.031 |
[44] | Li, T., Zhu, J., Zuo, S., Chen, S., Ma, J., Ma, Y., et al. (2019) 1, 25(OH)2D3 Attenuates Il-1β-Induced Epithelial-to-Mesenchymal Transition through Inhibiting the Expression of LncTCF7. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 27, 739-750. https://doi.org/10.3727/096504018x15360541345000 |
[45] | Zhu, Y., Chen, P., Gao, Y., Ta, N., Zhang, Y., Cai, J., et al. (2018) MEG3 Activated by Vitamin D Inhibits Colorectal Cancer Cells Proliferation and Migration via Regulating Clusterin. eBioMedicine, 30, 148-157. https://doi.org/10.1016/j.ebiom.2018.03.032 |
[46] | Li, Z., Zhao, Z., Zhang, G., Liu, Y. and Zheng, S. (2023) Lncrna Meg3 Inhibits the Proliferation and Migration Abilities of Colorectal Cancer Cells by Competitively Suppressing MiR-31 and Reducing the Binding of MiR-31 to Target Gene SFRP1. Aging, 16, 2061-2076. https://doi.org/10.18632/aging.205274 |
[47] | Aguilera, O., Pena, C., Garcia, J.M., Larriba, M.J., Ordonez-Moran, P., Navarro, D., et al. (2007) The Wnt Antagonist DICKKOPF-1 Gene Is Induced by 1 ,25-Dihydroxyvitamin D3 Associated to the Differentiation of Human Colon Cancer Cells. Carcinogenesis, 28, 1877-1884. https://doi.org/10.1093/carcin/bgm094 |
[48] | Ρlvarez-Díaz, S., Valle, N., García, J.M., Pe?a, C., Freije, J.M.P., Quesada, V., et al. (2009) Cystatin D Is a Candidate Tumor Suppressor Gene Induced by Vitamin D in Human Colon Cancer Cells. Journal of Clinical Investigation, 119, 2343-2358. https://doi.org/10.1172/jci37205 |
[49] | Alvarez-Díaz, S., Valle, N., Ferrer-Mayorga, G., Lombardía, L., Herrera, M., Domínguez, O., et al. (2012) MicroRNA-22 Is Induced by Vitamin D and Contributes to Its Antiproliferative, Antimigratory and Gene Regulatory Effects in Colon Cancer Cells. Human Molecular Genetics, 21, 2157-2165. https://doi.org/10.1093/hmg/dds031 |
[50] | Pereira, F., Barbáchano, A., Silva, J., Bonilla, F., Campbell, M.J., Mu?oz, A., et al. (2011) KDM6B/JMJD3 Histone Demethylase Is Induced by Vitamin D and Modulates Its Effects in Colon Cancer Cells. Human Molecular Genetics, 20, 4655-4665. https://doi.org/10.1093/hmg/ddr399 |
[51] | Barbáchano, A., Ordó?ez-Morán, P., García, J.M., Sánchez, A., Pereira, F., Larriba, M.J., et al. (2010) Sprouty-2 and E-Cadherin Regulate Reciprocally and Dictate Colon Cancer Cell Tumourigenicity. Oncogene, 29, 4800-4813. https://doi.org/10.1038/onc.2010.225 |
[52] | Kaler, P., Augenlicht, L. and Klampfer, L. (2009) Macrophage-Derived Il-1β Stimulates Wnt Signaling and Growth of Colon Cancer Cells: A Crosstalk Interrupted by Vitamin D3. Oncogene, 28, 3892-3902. https://doi.org/10.1038/onc.2009.247 |
[53] | Florescu, D.N., Boldeanu, M., ?erban, R., Florescu, L.M., Serbanescu, M., Ionescu, M., et al. (2023) Correlation of the Pro-Inflammatory Cytokines Il-1β, Il-6, and TNF-α, Inflammatory Markers, and Tumor Markers with the Diagnosis and Prognosis of Colorectal Cancer. Life, 13, Article 2261. https://doi.org/10.3390/life13122261 |
[54] | Díaz, G.D., Paraskeva, C., Thomas, M.G., et al. (2000) Apoptosis Is Induced by the Active Metabolite of Vitamin D3 and Its Analogue EB1089 in Colorectal Adenoma and Carcinoma Cells: Possible Implications for Prevention and Therapy. Cancer Research, 60, 2304-2312. |
[55] | Zhang, J., Yang, S., Xu, B., Wang, T., Zheng, Y., Liu, F., et al. (2019) P62 Functions as an Oncogene in Colorectal Cancer through Inhibiting Apoptosis and Promoting Cell Proliferation by Interacting with the Vitamin D Receptor. Cell Proliferation, 52, e12585. https://doi.org/10.1111/cpr.12585 |
[56] | Pendás-Franco, N., García, J.M., Pe?a, C., Valle, N., Pálmer, H.G., Hein?niemi, M., et al. (2008) DICKKOPF-4 Is Induced by TCF/β-catenin and Upregulated in Human Colon Cancer, Promotes Tumour Cell Invasion and Angiogenesis and Is Repressed by 1α ,25-dihydroxyvitamin D3. Oncogene, 27, 4467-4477. https://doi.org/10.1038/onc.2008.88 |
[57] | Ciulei, G., Orasan, O.H., Coste, S.C., Cozma, A., Negrean, V. and Procopciuc, L.M. (2020) Vitamin D and the Insulin-Like Growth Factor System: Implications for Colorectal Neoplasia. European Journal of Clinical Investigation, 50, e13265. https://doi.org/10.1111/eci.13265 |
[58] | Ferrer-Mayorga, G., Gómez-López, G., Barbáchano, A., Fernández-Barral, A., Pe?a, C., Pisano, D.G., et al. (2016) Vitamin D Receptor Expression and Associated Gene Signature in Tumour Stromal Fibroblasts Predict Clinical Outcome in Colorectal Cancer. Gut, 66, 1449-1462. https://doi.org/10.1136/gutjnl-2015-310977 |
[59] | Hu, P., Li, T., Lin, J., Qiu, M., Wang, D., Liu, Z., et al. (2020) VDR-SOX2 Signaling Promotes Colorectal Cancer Stemness and Malignancy in an Acidic Microenvironment. Signal Transduction and Targeted Therapy, 5, Article No. 183. https://doi.org/10.1038/s41392-020-00230-7 |
[60] | Fernández-Barral, A., Costales-Carrera, A., Buira, S.P., Jung, P., Ferrer-Mayorga, G., Larriba, M.J., et al. (2019) Vitamin D Differentially Regulates Colon Stem Cells in Patient-Derived Normal and Tumor Organoids. The FEBS Journal, 287, 53-72. https://doi.org/10.1111/febs.14998 |
[61] | Wong, C.C. and Yu, J. (2023) Gut Microbiota in Colorectal Cancer Development and Therapy. Nature Reviews Clinical Oncology, 20, 429-452. https://doi.org/10.1038/s41571-023-00766-x |
[62] | Song, M. and Chan, A.T. (2019) Environmental Factors, Gut Microbiota, and Colorectal Cancer Prevention. Clinical Gastroenterology and Hepatology, 17, 275-289. https://doi.org/10.1016/j.cgh.2018.07.012 |
[63] | Wu, H. and Wu, E. (2012) The Role of Gut Microbiota in Immune Homeostasis and Autoimmunity. Gut Microbes, 3, 4-14. https://doi.org/10.4161/gmic.19320 |
[64] | Beyerle, J., Frei, E., Stiborova, M., Habermann, N. and Ulrich, C.M. (2015) Biotransformation of Xenobiotics in the Human Colon and Rectum and Its Association with Colorectal Cancer. Drug Metabolism Reviews, 47, 199-221. https://doi.org/10.3109/03602532.2014.996649 |
[65] | Bellerba, F., Serrano, D., Johansson, H., Pozzi, C., Segata, N., NabiNejad, A., et al. (2022) Colorectal Cancer, Vitamin D and Microbiota: A Double-blind Phase II Randomized Trial (ColoViD) in Colorectal Cancer Patients. Neoplasia, 34, Article ID: 100842. https://doi.org/10.1016/j.neo.2022.100842 |
[66] | Hewison, M. (2011) Antibacterial Effects of Vitamin D. Nature Reviews Endocrinology, 7, 337-345. https://doi.org/10.1038/nrendo.2010.226 |