全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

循环浆细胞在多发性骨髓瘤中的临床价值及其形成机制
The Clinical Value and Mechanism of Circulating Plasma Cells in Multiple Myeloma

DOI: 10.12677/acm.2024.1461792, PP. 428-434

Keywords: 循环浆细胞,多发性骨髓瘤,综述
Circulating Plasma Cells
, Multiple Myeloma, Reviews

Full-Text   Cite this paper   Add to My Lib

Abstract:

长期以来,循环浆细胞(circulating plasma cell, CPC)的存在一直被认为是多发性骨髓瘤(multiple myeloma, MM)中有价值的预后生物标志物。多项研究表明,CPC检测可用于监测肿瘤负荷,高CPC水平可以预测治疗反应差和不良结局的高危MM。但是CPC的形成机制目前还尚未明确。本文对CPC在MM中的临床价值及CPC形成的可能机制进行综述。
The presence of circulating plasma cells (CPC) has long been considered a valuable prognostic biomarker in multiple myeloma (MM). Multiple studies have shown that CPC detection can be used to monitor tumor burden, and high CPC levels can predict high-risk MM for poor treatment response and adverse outcomes. However, the mechanism of CPC formation is still unclear. This article reviews the clinical value of CPC in MM and the possible mechanism of CPC formation.

References

[1]  Ghobrial, I.M. (2012) Myeloma as a Model for the Process of Metastasis: Implications for Therapy. Blood, 120, 20-30.
https://doi.org/10.1182/blood-2012-01-379024
[2]  Hofste op Bruinink, D., Kuiper, R., van Duin, M., Cupedo, T., van der Velden, V.H.J., Hoogenboezem, R., et al. (2022) Identification of High-Risk Multiple Myeloma with a Plasma Cell Leukemia-Like Transcriptomic Profile. Journal of Clinical Oncology, 40, 3132-3150.
https://doi.org/10.1200/JCO.21.01217
[3]  Paiva, B., Paino, T., Sayagues, J., Garayoa, M., San-Segundo, L., Martín, M., et al. (2013) Detailed Characterization of Multiple Myeloma Circulating Tumor Cells Shows Unique Phenotypic, Cytogenetic, Functional, and Circadian Distribution Profile. Blood, 122, 3591-3598.
https://doi.org/10.1182/blood-2013-06-510453
[4]  Garcés, J., Simicek, M., Vicari, M., Brozova, L., Burgos, L., Bezdekova, R., et al. (2019) Transcriptional Profiling of Circulating Tumor Cells in Multiple Myeloma: A New Model to Understand Disease Dissemination. Leukemia, 34, 589-603.
https://doi.org/10.1038/s41375-019-0588-4
[5]  Gonsalves, W.I., Rajkumar, S.V., Gupta, V., Morice, W.G., Timm, M.M., Singh, P.P., et al. (2014) Quantification of Clonal Circulating Plasma Cells in Newly Diagnosed Multiple Myeloma: Implications for Redefining High-Risk Myeloma. Leukemia, 28, 2060-2065.
https://doi.org/10.1038/leu.2014.98
[6]  Nowakowski, G.S., Witzig, T.E., Dingli, D., Tracz, M.J., Gertz, M.A., Lacy, M.Q., et al. (2005) Circulating Plasma Cells Detected by Flow Cytometry as a Predictor of Survival in 302 Patients with Newly Diagnosed Multiple Myeloma. Blood, 106, 2276-2279.
https://doi.org/10.1182/blood-2005-05-1858
[7]  Caers, J., Garderet, L., Kortüm, K.M., O’Dwyer, M.E., van de Donk, N.W.C.J., Binder, M., et al. (2018) European Myeloma Network Recommendations on Tools for the Diagnosis and Monitoring of Multiple Myeloma: What to Use and When. Haematologica, 103, 1772-1784.
https://doi.org/10.3324/haematol.2018.189159
[8]  Riebl, V., Dold, S.M., Wider, D., Follo, M., Ihorst, G., Waldschmidt, J.M., et al. (2021) Ten Color Multiparameter Flow Cytometry in Bone Marrow and Apheresis Products for Assessment and Outcome Prediction in Multiple Myeloma Patients. Frontiers in Oncology, 11, Article 708231.
https://doi.org/10.3389/fonc.2021.708231
[9]  Morice, W.G., Hanson, C.A., Kumar, S., Frederick, L.A., Lesnick, C.E. and Greipp, P.R. (2007) Novel Multi-Parameter Flow Cytometry Sensitively Detects Phenotypically Distinct Plasma Cell Subsets in Plasma Cell Proliferative Disorders. Leukemia, 21, 2043-2046.
https://doi.org/10.1038/sj.leu.2404712
[10]  Evans, L.A., Jevremovic, D., Nandakumar, B., Dispenzieri, A., Buadi, F.K., Dingli, D., et al. (2020) Utilizing Multiparametric Flow Cytometry in the Diagnosis of Patients with Primary Plasma Cell Leukemia. American Journal of Hematology, 95, 637-642.
https://doi.org/10.1002/ajh.25773
[11]  Garcés, J., Cedena, M., Puig, N., Burgos, L., Perez, J.J., Cordon, L., et al. (2022) Circulating Tumor Cells for the Staging of Patients with Newly Diagnosed Transplant-Eligible Multiple Myeloma. Journal of Clinical Oncology, 40, 3151-3161.
https://doi.org/10.1200/jco.21.01365
[12]  Bertamini, L., Oliva, S., Rota-Scalabrini, D., Paris, L., Morè, S., Corradini, P., et al. (2022) High Levels of Circulating Tumor Plasma Cells as a Key Hallmark of Aggressive Disease in Transplant-Eligible Patients with Newly Diagnosed Multiple Myeloma. Journal of Clinical Oncology, 40, 3120-3131.
https://doi.org/10.1200/jco.21.01393
[13]  Jelinek, T., Bezdekova, R., Zihala, D., Sevcikova, T., Anilkumar Sithara, A., Pospisilova, L., et al. (2023) More than 2% of Circulating Tumor Plasma Cells Defines Plasma Cell Leukemia-Like Multiple Myeloma. Journal of Clinical Oncology, 41, 1383-1392.
https://doi.org/10.1200/jco.22.01226
[14]  Flores-Montero, J., Sanoja-Flores, L., Paiva, B., Puig, N., García-Sánchez, O., B?ttcher, S., et al. (2017) Next Generation Flow for Highly Sensitive and Standardized Detection of Minimal Residual Disease in Multiple Myeloma. Leukemia, 31, 2094-2103.
https://doi.org/10.1038/leu.2017.29
[15]  Xia, Y., Shen, N., Zhang, R., Wu, Y., Shi, Q., Li, J., et al. (2023) High-Risk Multiple Myeloma Predicted by Circulating Plasma Cells and Its Genetic Characteristics. Frontiers in Oncology, 13, Article 1083053.
https://doi.org/10.3389/fonc.2023.1083053
[16]  Korthals, M., Sehnke, N., Kronenwett, R., Schroeder, T., Strapatsas, T., Kobbe, G., et al. (2013) Molecular Monitoring of Minimal Residual Disease in the Peripheral Blood of Patients with Multiple Myeloma. Biology of Blood and Marrow Transplantation, 19, 1109-1115.
https://doi.org/10.1016/j.bbmt.2013.04.025
[17]  Sanoja-Flores, L., Flores-Montero, J., Garcés, J.J., Paiva, B., Puig, N., García-Mateo, A., et al. (2018) Next Generation Flow for Minimally-Invasive Blood Characterization of MGUS and Multiple Myeloma at Diagnosis Based on Circulating Tumor Plasma Cells (CTPC). Blood Cancer Journal, 8, Article No. 117.
https://doi.org/10.1038/s41408-018-0153-9
[18]  Gupta, L., Suku, P., Dash, A., Bose, P., Sharma, P., Mallik, N., et al. (2024) Detection of Circulating Normal and Tumor Plasma Cells in Newly Diagnosed Patients of Multiple Myeloma and Their Associations with Clinical and Laboratory Parameters. Current Problems in Cancer, 48, Article 101025.
https://doi.org/10.1016/j.currproblcancer.2023.101025
[19]  Cowan, A.J., Stevenson, P.A., Libby, E.N., Becker, P.S., Coffey, D.G., Green, D.J., et al. (2018) Circulating Plasma Cells at the Time of Collection of Autologous PBSC for Transplant in Multiple Myeloma Patients Is a Negative Prognostic Factor Even in the Age of Post-Transplant Maintenance Therapy. Biology of Blood and Marrow Transplantation, 24, 1386-1391.
https://doi.org/10.1016/j.bbmt.2018.02.017
[20]  Galieni, P., Travaglini, F., Vagnoni, D., Ruggieri, M., Caraffa, P., Bigazzi, C., et al. (2021) The Detection of Circulating Plasma Cells May Improve the Revised International Staging System (R-ISS) Risk Stratification of Patients with Newly Diagnosed Multiple Myeloma. British Journal of Haematology, 193, 542-550.
https://doi.org/10.1111/bjh.17118
[21]  Han, W., Jin, Y., Xu, M., Zhao, S., Shi, Q., Qu, X., et al. (2021) Prognostic Value of Circulating Clonal Plasma Cells in Newly Diagnosed Multiple Myeloma. Hematology, 26, 510-517.
https://doi.org/10.1080/16078454.2021.1948208
[22]  Fernández de Larrea, C., Kyle, R., Rosi?ol, L., Paiva, B., Engelhardt, M., Usmani, S., et al. (2021) Primary Plasma Cell Leukemia: Consensus Definition by the International Myeloma Working Group According to Peripheral Blood Plasma Cell Percentage. Blood Cancer Journal, 11, Article No. 192.
https://doi.org/10.1038/s41408-021-00587-0
[23]  Tiedemann, R.E., Gonzalez-Paz, N., Kyle, R.A., Santana-Davila, R., Price-Troska, T., Van Wier, S.A., et al. (2008) Genetic Aberrations and Survival in Plasma Cell Leukemia. Leukemia, 22, 1044-1052.
https://doi.org/10.1038/leu.2008.4
[24]  Usmani, S.Z., Nair, B., Qu, P., Hansen, E., Zhang, Q., Petty, N., et al. (2012) Primary Plasma Cell Leukemia: Clinical and Laboratory Presentation, Gene-Expression Profiling and Clinical Outcome with Total Therapy Protocols. Leukemia, 26, 2398-2405.
https://doi.org/10.1038/leu.2012.107
[25]  Lionetti, M., Musto, P., Di Martino, M.T., Fabris, S., Agnelli, L., Todoerti, K., et al. (2013) Biological and Clinical Relevance of miRNA Expression Signatures in Primary Plasma Cell Leukemia. Clinical Cancer Research, 19, 3130-3142.
https://doi.org/10.1158/1078-0432.ccr-12-2043
[26]  Todoerti, K., Calice, G., Trino, S., Simeon, V., Lionetti, M., Manzoni, M., et al. (2018) Global Methylation Patterns in Primary Plasma Cell Leukemia. Leukemia Research, 73, 95-102.
https://doi.org/10.1016/j.leukres.2018.09.007
[27]  Garc??a-Sanz, R., Orfa?o, A., Gonza?lez, M., Tabernero, M.D., Blade?, J., Moro, M.J., et al. (1999) Primary Plasma Cell Leukemia: Clinical, Immunophenotypic, Dna Ploidy, and Cytogenetic Characteristics. Blood, 93, 1032-1037.
https://doi.org/10.1182/blood.v93.3.1032.403a15_1032_1037
[28]  Bladé, J. and Kyle, R.A. (1999) Nonsecretory Myeloma, Immunoglobulin D Myeloma, and Plasma Cell Leukemia. Hematology/Oncology Clinics of North America, 13, 1259-1272.
https://doi.org/10.1016/s0889-8588(05)70125-8
[29]  van de Donk, N.W.C.J., Lokhorst, H.M., Anderson, K.C. and Richardson, P.G. (2012) How I Treat Plasma Cell Leukemia. Blood, 120, 2376-2389.
https://doi.org/10.1182/blood-2012-05-408682
[30]  Kyle, R.A. (1974) Plasma Cell Leukemia. Report on 17 Cases. Archives of Internal Medicine, 133, 813-818.
https://doi.org/10.1001/archinte.133.5.813
[31]  Sar?, M., Sar?, S. and Nalcac?, M. (2017) The Effect of Suppressed Levels of Uninvolved Immunoglobulins on the Prognosis of Symptomatic Multiple Myeloma. Turkish Journal of Hematology, 34, 131-136.
https://doi.org/10.4274/tjh.2016.0161
[32]  S?rrig, R., Klausen, T.W., Salomo, M., Vangsted, A.J., Fr?lund, U.C., Andersen, K.T., et al. (2017) Immunoparesis in Newly Diagnosed Multiple Myeloma Patients: Effects on Overall Survival and Progression Free Survival in the Danish Population. PLOS ONE, 12, e0188988.
https://doi.org/10.1371/journal.pone.0188988
[33]  Garcés, J., San-Miguel, J. and Paiva, B. (2022) Biological Characterization and Clinical Relevance of Circulating Tumor Cells: Opening the Pandora’s Box of Multiple Myeloma. Cancers, 14, Article 1430.
https://doi.org/10.3390/cancers14061430
[34]  Pellat-Deceunynck, C., Barillé, S., Jego, G., Puthier, D., Robillard, N., Pineau, D., et al. (1998) The Absence of CD56 (NCAM) on Malignant Plasma Cells Is a Hallmark of Plasma Cell Leukemia and of a Special Subset of Multiple Myeloma. Leukemia, 12, 1977-1982.
https://doi.org/10.1038/sj.leu.2401211
[35]  Chen, F., Hu, Y., Wang, X., Fu, S., Liu, Z. and Zhang, J. (2018) Expression of CD81 and CD117 in Plasma Cell Myeloma and the Relationship to Prognosis. Cancer Medicine, 7, 5920-5927.
https://doi.org/10.1002/cam4.1840
[36]  任慧娟, 苏晓甜, 陈秋雨, 等, 循环浆细胞与高危多发性骨髓瘤及免疫球蛋白基因重排的关系[J]. 临床肿瘤学杂志, 2023, 28(10): 887-892.
[37]  Pfeifer, S., Perez-Andres, M., Ludwig, H., Sahota, S.S. and Zojer, N. (2011) Evaluating the Clonal Hierarchy in Light-Chain Multiple Myeloma: Implications against the Myeloma Stem Cell Hypothesis. Leukemia, 25, 1213-1216.
https://doi.org/10.1038/leu.2011.70
[38]  Mangiacavalli, S., Pochintesta, L., Cocito, F., Pompa, A., Bernasconi, P., Cazzola, M., et al. (2013) Correlation between Burden of 17P13.1 Alteration and Rapid Escape to Plasma Cell Leukaemia in Multiple Myeloma. British Journal of Haematology, 162, 555-558.
https://doi.org/10.1111/bjh.12385
[39]  Mosca, L., Musto, P., Todoerti, K., Barbieri, M., Agnelli, L., Fabris, S., et al. (2012) Genome-Wide Analysis of Primary Plasma Cell Leukemia Identifies Recurrent Imbalances Associated with Changes in Transcriptional Profiles. American Journal of Hematology, 88, 16-23.
https://doi.org/10.1002/ajh.23339
[40]  Yue, Z., Zhou, Y., Zhao, P., Chen, Y., Yuan, Y., Jing, Y., et al. (2017) P53 Deletion Promotes Myeloma Cells Invasion by Upregulating miR19a/CXCR5. Leukemia Research, 60, 115-122.
https://doi.org/10.1016/j.leukres.2017.07.003
[41]  Alagpulinsa, D.A., Szalat, R.E., Poznansky, M.C. and Shmookler Reis, R.J. (2020) Genomic Instability in Multiple Myeloma. Trends in Cancer, 6, 858-873.
https://doi.org/10.1016/j.trecan.2020.05.006
[42]  Neuse, C.J., Lomas, O.C., Schliemann, C., Shen, Y.J., Manier, S., Bustoros, M., et al. (2020) Genome Instability in Multiple Myeloma. Leukemia, 34, 2887-2897.
https://doi.org/10.1038/s41375-020-0921-y

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133