|
基于缺氧诱导因子通路治疗肾癌的研究进展
|
Abstract:
肾癌是泌尿系常见恶性肿瘤之一,除外科手术外,其治疗手段包括免疫治疗、靶向治疗、以及细胞疗法等。目前缺氧诱导因子通路治疗肾细胞癌的研究取得了一定的进展,但仍面临许多挑战。本文结合国内外研究报道,针对利用缺氧诱导因子通路治疗肾癌的相关文献进行综述,旨在探讨缺氧诱导因子通路在治疗肾癌研究及应用,以期为探索肾癌治疗提供新的思路,并为肾癌治疗的相关研究提供一定价值。
Renal cell carcinoma (RCC) is one of the most common malignant tumors of the urinary system, in addition to surgery, its treatment includes immunotherapy, targeted therapy, cell therapy and so on. At present, some progress has been made in the treatment of renal cell carcinoma by hypoxia inducible factor pathway, but there are still many challenges. Combined with the research reports at home and abroad, this paper reviews the relevant literature on the treatment of renal cell carcinoma with hypoxia-inducible factor pathway, in order to explore the research and application of hypoxia-inducible factor pathway in the treatment of renal cell carcinoma, in order to provide new ideas for the treatment of renal cell carcinoma, and provide some value for the treatment of renal cell carcinoma.
[1] | Motzer, R.J., Jonasch, E., Agarwal, N., et al. (2022) Kidney Cancer, Version 3. 2022, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 20, 71-90. |
[2] | Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660 |
[3] | Moch, H., Cubilla, A.L., Humphrey, P.A., Reuter, V.E. and Ulbright, T.M. (2016) The 2016 Who Classification of Tumours of the Urinary System and Male Genital Organs—Part A: Renal, Penile, and Testicular Tumours. European Urology, 70, 93-105. https://doi.org/10.1016/j.eururo.2016.02.029 |
[4] | Bukowski, R.M. (1997) Natural History and Therapy of Metastatic Renal Cell Carcinoma. Cancer, 80, 1198-1220. https://doi.org/10.1002/(sici)1097-0142(19971001)80:7<1198::aid-cncr3>3.0.co;2-h |
[5] | National Comprehensive Cancer Network (2023) Kidney Cancer (v.1.2024). https://www.nccnchina.org.cn/guide/detail/406 |
[6] | Ahmed, R. and Ornstein, M.C. (2023) Targeting HIF-2 Alpha in Renal Cell Carcinoma. Current Treatment Options in Oncology, 24, 1183-1198. https://doi.org/10.1007/s11864-023-01106-y |
[7] | 曹铮, 冯林, 冯晓莉. 缺氧相关的miRNA-210在肿瘤中的研究进展[J]. 肿瘤防治研究, 2018, 45(7): 500-504. |
[8] | Xu, R., Wang, K., Rizzi, J.P., et al. (2019) 3-[(1S,2S,3R)-2,3-Difluoro-1-hydroxy-7-methylsulfonylindan-4-yl]oxy-5-fluorobenzonitrile (PT2977), a Hypoxia-Inducible Factor 2α (HIF-2α) Inhibitor for the Treatment of Clear Cell Renal Cell Carcinoma. Journal of Medicinal Chemistry, 62, 6876-6893. https://doi.org/10.1021/acs.jmedchem.9b00719 |
[9] | Choueiri, T.K., Bauer, T.M., Papadopoulos, K.P., Plimack, E.R., Merchan, J.R., McDermott, D.F., et al. (2021) Inhibition of Hypoxia-Inducible Factor-2α in Renal Cell Carcinoma with Belzutifan: A Phase 1 Trial and Biomarker Analysis. Nature Medicine, 27, 802-805. https://doi.org/10.1038/s41591-021-01324-7 |
[10] | Musleh Ud Din, S., Streit, S.G., Huynh, B.T., Hana, C., Abraham, A. and Hussein, A. (2024) Therapeutic Targeting of Hypoxia-Inducible Factors in Cancer. International Journal of Molecular Sciences, 25, Article No. 2060. https://doi.org/10.3390/ijms25042060 |
[11] | Yue, Y., Tang, Y., Huang, H., Zheng, D., Liu, C., Zhang, H., et al. (2023) VBP1 Negatively Regulates Chip and Selectively Inhibits the Activity of Hypoxia-Inducible Factor (HIF)-1α but Not HIF-2α. Journal of Biological Chemistry, 299, Article ID: 104829. https://doi.org/10.1016/j.jbc.2023.104829 |
[12] | Peng, S., Wang, Z., Tang, P., Wang, S., Huang, Y., Xie, Q., et al. (2023) PHF8-GLUL Axis in Lipid Deposition and Tumor Growth of Clear Cell Renal Cell Carcinoma. Science Advances, 9, eadf3566. https://doi.org/10.1126/sciadv.adf3566 |
[13] | Zhang, X., Li, S., He, J., Jin, Y., Zhang, R., Dong, W., et al. (2022) TET2 Suppresses VHL Deficiency-Driven Clear Cell Renal Cell Carcinoma by Inhibiting HIF Signaling. Cancer Research, 82, 2097-2109. https://doi.org/10.1158/0008-5472.can-21-3013 |
[14] | Rivas, S., Silva, P., Reyes, M., Sepúlveda, H., Solano, L., Acu?a, J., et al. (2020) The RabGEF ALS2 Is a Hypoxia Inducible Target Associated with the Acquisition of Aggressive Traits in Tumor Cells. Scientific Reports, 10, Article No. 22302. https://doi.org/10.1038/s41598-020-79270-6 |
[15] | Gu, X., Meng, H., Wang, J., Wang, R., Cao, M., Liu, S., et al. (2021) Hypoxia Contributes to Galectin-3 Expression in Renal Carcinoma Cells. European Journal of Pharmacology, 890, Article ID: 173637. https://doi.org/10.1016/j.ejphar.2020.173637 |
[16] | Liu, G., Lu, Y., Li, L., Jiang, T., Chu, S., Hou, P., et al. (2020) The Kinesin Motor Protein KIF4A as a Potential Therapeutic Target in Renal Cell Carcinoma. Investigational New Drugs, 38, 1730-1742. https://doi.org/10.1007/s10637-020-00961-y |
[17] | Hong, K., Hu, L., Liu, X., Simon, J.M., Ptacek, T.S., Zheng, X., et al. (2020) Usp37 Promotes Deubiquitination of HIF2α in Kidney Cancer. Proceedings of the National Academy of Sciences, 117, 13023-13032. https://doi.org/10.1073/pnas.2002567117 |
[18] | Liu, C., Liu, L., Wang, K., Li, X., Ge, L., Ma, R., et al. (2020) VHL-Hif-2α Axis-Induced SMYD3 Upregulation Drives Renal Cell Carcinoma Progression via Direct Trans-Activation of EGFR. Oncogene, 39, 4286-4298. https://doi.org/10.1038/s41388-020-1291-7 |
[19] | Fan, Y., Ou, L., Fan, J., Li, L., Wu, X., Luo, C., et al. (2019) HepaCAM Regulates Warburg Effect of Renal Cell Carcinoma via HIF-1α/NF-κB Signaling Pathway. Urology, 127, 61-67. https://doi.org/10.1016/j.urology.2018.11.033 |
[20] | Huang, R.R., Chen, Z., Kroeger, N., Pantuck, A., Said, J., Kluger, H.M., et al. (2024) CD70 Is Consistently Expressed in Primary and Metastatic Clear Cell Renal Cell Carcinoma. Clinical Genitourinary Cancer, 22, 347-353. https://doi.org/10.1016/j.clgc.2023.12.003 |
[21] | Li, X., Wu, Y., Xiao, Z., Liu, Y., Wang, C., Zhou, L., et al. (2024) Long Non-Coding RNA HIF1A-AS2 Promotes Carcinogenesis by Enhancing Gli1-Mediated HIF1α Expression in Clear Cell Renal Cell Carcinoma. Pathology—Research and Practice, 253, Article ID: 154984. https://doi.org/10.1016/j.prp.2023.154984 |
[22] | Singh, A., Choudhury, S.D., Singh, P., Singh, V.V., Singh, S.N. and Sharma, A. (2022) KCMF1 Regulates Autophagy and Ion Channels’ Function in Renal Cell Carcinoma: A Future Therapeutic Target. Journal of Cancer Research and Clinical Oncology, 149, 5617-5626. https://doi.org/10.1007/s00432-022-04507-y |
[23] | Liao, M., Li, Y., Xiao, A., Lu, Q., Zeng, H., Qin, H., et al. (2022) HIF-2α-Induced Upregulation of CD36 Promotes the Development of CCRCC. Experimental Cell Research, 421, Article ID: 113389. https://doi.org/10.1016/j.yexcr.2022.113389 |
[24] | Panowski, S.H., Srinivasan, S., Tan, N., et al. (2022) Preclinical Development and Evaluation of Allogeneic CAR T Cells Targeting CD70 for the Treatment of Renal Cell Carcinoma. Cancer Research, 82, 2610-2624. https://doi.org/10.1158/0008-5472.CAN-21-2931 |