全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利多卡因影响心肌缺血再灌注损伤相关机制的研究进展
Research Progress on the Mechanism of Lidocaine Affecting Myocardial Ischemia-Reperfusion Injury

DOI: 10.12677/acm.2024.1461762, PP. 188-195

Keywords: 利多卡因,心肌缺血再灌注损伤,炎症因子
Lidocaine
, Myocardial Ischemia-Reperfusion Injury, Inflammatory Factors

Full-Text   Cite this paper   Add to My Lib

Abstract:

心肌缺血再灌注损伤是指供应心肌组织的血流被阻断后,恢复血流再灌注时可能会发生损伤加重的情况,这是一个动态发展的过程,其中包括MIRI相关炎症反应、中性粒细胞的激活和血管内皮功能损伤。心肌缺血会引起炎症反应、氧化应激、免疫紊乱、心肌超微结构变化等一系列损伤性变化,严重的心肌缺血的患者常因发生心律失常而猝死。利多卡因作为对钠通道有阻滞作用的氨基酰胺类中效局部麻醉药,临床上常用于治疗室性心律失常。利多卡因可以减轻机体受伤部位的炎性反应,减少中性粒细胞和巨噬细胞等细胞的聚集,可能通过调节体内炎症因子、中性粒细胞、内皮细胞等心肌损伤相关因素而改变损伤进展。本文就利多卡因可能影响心肌缺血再灌注损伤的相关机制研究进展展开综述。
Myocardial ischemia-reperfusion injury is a condition in which the blood flow supplying myocardial tissue is blocked, and then the injury may be aggravated when the blood flow reperfusion is restored, which is a dynamic developmental process that includes MIRI-related inflammatory response, activation of neutrophils and impairment of vascular endothelial function. Myocardial ischemia causes a series of damaging changes such as inflammatory response, oxidative stress, immune disorders, and ultrastructural changes in the myocardium, and patients with severe myocardial ischemia often die suddenly due to the occurrence of arrhythmias. Lidocaine, as a medium-acting local anesthetic of the aminamide class with a blocking effect on sodium channels, is commonly used clinically for the treatment of ventricular arrhythmias. Lidocaine reduces the inflammatory response at the site of injury, decreases the aggregation of cells such as neutrophils and macrophages, and may alter the progression of injury by modulating myocardial injury-related factors such as inflammatory factors, neutrophils, and endothelial cells in vivo. In this paper, we review the progress of research on the mechanisms related to the possible influence of lidocaine on myocardial ischemia-reperfusion injury.

References

[1]  李志乐, 黄照河, 胡益森, 徐戈. 心肌缺血再灌注无复流风险评估的研究进展[J]. 吉林医学, 2022, 43(1): 239-242.
[2]  郑琢, 吴沁娟, 温虎成, 刘少星, 谢先丰. 利多卡因缓解心肌缺血再灌注大鼠心脏功能和免疫紊乱并抑制NF-κBp38MAPK的活化[J]. 中国免疫学杂志, 2021, 37(13): 1547-1552.
[3]  Ding, H.S., Yang, J., Chen, P., et al. (2013) The HMGB1-TLR4 Axis Contributes to Myocardial Ischemia/Reperfusion Injury via Regulation of Cardiomyocyte Apoptosis. Gene, 527, 389-393.
https://doi.org/10.1016/j.gene.2013.05.041
[4]  Hu, G., Zhang, Y., Jiang, H., et al. (2013) Exendin-4 Attenuates Myocardial Ischemia and Reperfusion Injury by Inhibiting High Mobility Group Box 1 Protein Expression. Cardiology Journal, 20, 600-604.
https://doi.org/10.5603/CJ.2013.0159
[5]  彭瑞君. 急性心肌梗死冠脉病变与EMPs、Hs-CRP的相关性研究[D]: [硕士学位论文]. 广州: 南方医科大学, 2017.
[6]  王羽, 李凌儿, 于丽君, 刘明洁, 郭欣, 付瑶, 魏成喜. 蒙药苏格木勒-3汤对异丙肾上腺素诱导HL-1心肌细胞钙超载损伤的影响[J]. 中医杂志, 2020, 61(6): 524-527.
[7]  Halliwell, B. (2013) The Antioxidant Paradox: Less Paradoxical Now? British Journal of Clinical Pharmacology, 75, 637-644.
https://doi.org/10.1111/j.1365-2125.2012.04272.x
[8]  Aganjac, M., Cipak, A., Schaur, R.J., et al. (2016) Pathophysiology of Neutrophil-Mediated Extracellular Redox Reactions. Frontiers in Bioscience-Landmark, 21, 839-855.
https://doi.org/10.2741/4423
[9]  李志乐, 黄照河, 胡益森, 徐戈. 心肌缺血再灌注无复流风险评估的研究进展[J]. 吉林医学, 2022, 43(1): 239-242.
[10]  Cheng, C., Liu, X.B., Bi, S.J., et al. (2019) Serum Cystatin C Levels Relate to No-Reflow Phenomenon in Percutaneous Coronary Interventions in ST-Segment Elevation Myocardial Infarction. PLOS ONE, 14, e0220654.
https://doi.org/10.1371/journal.pone.0220654
[11]  Andrassy, M., Volz, H.C., Igwe, J.C., et al. (2008) High-Mobility Group Box-1 in Ischemia-Reperfusion Injury of the Heart. Circulation, 117, 3216-3226.
https://doi.org/10.1161/CIRCULATIONAHA.108.769331
[12]  巫美红, 楼敏芳, 陈志进, 等. 通心络预给药对缺血再灌注损伤心肌的保护作用及肥大细胞脱颗粒诱导炎症反应的机制[J]. 中华中医药学刊, 2020, 38(5): 151-154, 274.
[13]  宋丽茹, 孙晨, 马佳乐, 杨滨, 郭睿, 闫萍. Canopy2对大鼠心肌缺血再灌注损伤心肌细胞凋亡的影响[J]. 中国生物制品学杂志, 2022, 35(2): 159-163, 169.
[14]  Kolte, D., Bhardwaj, B., Lu, M., et al. (2022) Association between Early Left Ventricular Ejection Fraction Improvement after Transcatheter Aortic Valve Replacement and 5-Year Clinical Outcomes. JAMA Cardiology, 7, 934-944.
https://doi.org/10.1001/jamacardio.2022.2222
[15]  Kawano, S., Kubota, T., Monden, Y., et al. (2006) Blockede of NF-κB Improves Cardia Function and Survival after Myocardial Infarction. American Journal of Physiology-Heart and Circulatory Physiology, 291, 1337-1344.
https://doi.org/10.1152/ajpheart.01175.2005
[16]  Kvietys, P.R. and Granger, D.N. (2012) Role of Reactive Oxygen and Nitrogen Species in the Vascular Responses to Inflammation. Free Radical Biology and Medicine, 52, 556-592.
https://doi.org/10.1016/j.freeradbiomed.2011.11.002
[17]  Niazy, N., Mrozek, L., Barth, M., Immohr, M.B., Kalampokas, N., Saeed, D., Aubin, H., Sugimura, Y., Westenfeld, R., Boeken, U., Lichtenberg, A. and Akhyari, P. (2021) Altered MRNA Expression of Interleukin-1 Receptors in Myocardial Tissue of Patients with Left Ventricular Assist Device Support. Journal of Clinical Medicine, 10, Article 4856.
https://doi.org/10.3390/jcm10214856
[18]  Vandersmissen, H., Gworek, H., Dewolf, P. and Sabbe, M. (2021) Drug Use during Adult Advanced Cardiac Life Support: An Overview of Reviews. Resuscitation Plus, 7, Article ID: 100156.
https://doi.org/10.1016/j.resplu.2021.100156
[19]  Xiao, H., Chen, Z., Liao, Y., et a1. (2008) Positive Correlation of Tumor Necrosis Factor-Alpha Early Expression in Myocardium and Ventricular Arrhythmias in Rats with Acute Myocardial Infarction. Archives of Medical Research, 39, 285-291.
https://doi.org/10.1016/j.arcmed.2007.10.004
[20]  Bartekova, M., Radosinska, J., Jelemensky, M. and Dhalla, N.S. (2018) Role of Cytokines and Inflammation in Heart Function during Health and Disease. Heart Failure Reviews, 23, 733-758.
https://doi.org/10.1007/s10741-018-9716-x
[21]  杨天贵, 张大庆. 炎症反应在糖尿病加重心肌缺血/再灌注损伤中作用的研究进展[J]. 实用药物与临床, 2022, 25(12): 1137-1141.
[22]  Jaénrafael, I., Val-Blasco, A., Prieto, P., Gil-Fernández, M., Smani, T., López-Sendón, J.L., Delgado, C., Boscá, L. and Fernández-Velasco, M. (2020) Innate Immune Receptors, Key Actors in Cardiovascular Diseases. JACC: Basic to Translational Science, 5, 735-749.
https://doi.org/10.1016/j.jacbts.2020.03.015
[23]  Guo, L.L., Guo, M.L., Yao, J., Weng, Y.Q. and Zhang, X.Z. (2020) MicroRNA-421 Improves Ischemia/Reperfusion Injury via Regulation Toll-Like Receptor 4 Pathway. Journal of International Medical Research, 48.
https://doi.org/10.1177/0300060519871863
[24]  Shimamoto, A., Chong, A.J., Yada, M., et al. (2006) Inhibition of Toll-Like Receptor 4 with Eritoran Attenuates Myocardial Ischemia-Reperfusion Injury. Circulation, 114, I-270-I-274.
https://doi.org/10.1161/CIRCULATIONAHA.105.000901
[25]  Mangerich, A. and Burkle, A. (2012) Pleiotropic Cellular Functions of PARP1 in Longevity and Aging: Genome Maintenance Meets Inflammation. Oxidative Medicine and Cellular Longevity, 2012, Article ID: 321653.
https://doi.org/10.1155/2012/321653
[26]  Timmers, L., Sluijter, J.P., Van, Keulen, J.K., et al. (2008) Toll-Like Receptor 4 Mediates Maladaptive Left Ventricular Remodeling and Impairs Cardiac Function after Myocardial Infarction. Circulation Research, 102, 257-264.
https://doi.org/10.1161/CIRCRESAHA.107.158220
[27]  米磊. HMGB1/RAGE促炎信号轴在下肢缺血再灌注血管内皮细胞损伤中的作用研究[D]: [博士学位论文]. 济南: 山东大学, 2020.
[28]  Prabhu, S.D. and Frangogiannis, N.G. (2016) The Biological Basis for Cardiac Repair after Myocardial Infarction: From Inflammation to Fibrosis. Circulation Research, 119, 91-112.
https://doi.org/10.1161/CIRCRESAHA.116.303577
[29]  Boswell, M.R., Moman, R.N., Burtoft, M., Gerdes, H., Martinez, J., Gerberi, D.J., Wittwer, E., Murad, M.H. and Hooten, W.M. (2021) Lidocaine for Postoperative Pain after Cardiac Surgery: A Systematic Review. Journal of Cardiothoracic Surgery, 16, Article No. 157.
https://doi.org/10.1186/s13019-021-01549-0
[30]  Berk, T. and Silberstein, S.D. (2018) The Use and Method of Action of Intravenous Lidocaine and Its Metabolite in Headache Disorders. Headache, 58, 783-789.
https://doi.org/10.1111/head.13298
[31]  Lancaster, R.J., Wren, K., Hudson, A., Leavitt, K., Albala, M. and Tischaefer, D. (2019) Intravenous Lidocaine for Chronic Neuropathic Pain a Systematic Review Addressing Nursing Care. Pain Management Nursing, 21, 194-200.
https://doi.org/10.1016/j.pmn.2019.06.008
[32]  安敏, 邱颐. 利多卡因非麻醉作用研究进展[J]. 临床麻醉学杂志, 2015, 31(9): 928-930.
[33]  Kawahito, S., Nakahata, K., Azma, T., Kuroda, Y., Cook, D.J. and Kinoshita, H. (2014) Protective Effects of Anesthetics on Vascular Function Related to K Channels? Current Pharmaceutical Design, 20, 5727-5737.
https://doi.org/10.2174/1381612820666140204115647
[34]  Hesketh, L.M., Sikkel, M.B., Mahoney-Sanchez, L., Mazzacuva, F., Chowdhury, R.A., Tzortzis, K.N., Firth, J., Winter, J., MacLeod, K.T., Ogrodzinski, S., Wilder, C.D.E., Patterson, L.H., Peters, N.S. and Curtis, M.J. (2022) OCT2013, An Ischaemia-Activated Antiarrhythmic Prodrug, Devoid of the Systemic Side Effects of Lidocaine. British Journal of Pharmacology, 179, 2037-2053.
https://doi.org/10.1111/bph.15764
[35]  Liebetrau, C., Kim, W.K., Meyer, A., et al. (2017) Identification of Periprocedural Myocardial Infarction Using a High-Sensitivity Troponin I Assay in Patients Who Underwent Transcatheter Aortic Valve Implantation. The American Journal of Cardiology, 120, 1180-1186.
https://doi.org/10.1016/j.amjcard.2017.06.069
[36]  唐慧洁, 李玉和. 术中持续静脉输注利多卡因的应用进展[J]. 云南医药, 2021, 42(3): 275-277.
[37]  丁丹. 急诊介入治疗患者发生再灌注心律失常的临床特点[J]. 中国卫生工程学, 2019, 18(1): 105-107.
[38]  Romera, A., Cebollero, M., Romero-Gómez, B., Carricondo, F., Zapatero, S., García-Aldao, U., Martín-Albo, L., Ortega, J., Vara, E., Garutti, I. and Simón, C. (2021) Effect of Intravenous Lidocaine on Inflammatory and Apoptotic Response of Ischemia-Reperfusion Injury in Pigs Undergoing Lung Resection Surgery. BioMed Research International, 2021, Article ID: 6630232.
https://doi.org/10.1155/2021/6630232
[39]  Picardi, S., Cartellieri, S., Groves, D., et al. (2013) Local Anesthetic-Induced Inhibition of Human Neutrophil Priming: The Influence of Structure, Lipophilicity, and Charge. Regional Anesthesia & Pain Medicine, 38, 9-15.
https://doi.org/10.1097/AAP.0b013e31827a3cbe
[40]  首运凤, 李元涛. 利多卡因的临床作用及机制[J]. 中国临床新医学, 2021, 14(5): 522-527.
[41]  Granfeldt, A. (2012) Organ Dysfunction Following Regional and Global Ischemia/Reperfusion. Intervention with Postconditioning and Adenocaine. Danish Medical Journal, 59, B4496.
[42]  De Klaver, M.J., Weingart, G.S., Obrig, T.G., et al. (2006) Local Anesthetic-Induced Protection against Lipopolysaccharide-Induced Injury in Endothelial Cells: The Role of Mitochondrial Adenosine Triphosphate-Sensitive Potassium Channels. Anesthesia & Analgesia, 102, 1108-1113.
https://doi.org/10.1213/01.ane.0000200310.39031.1f
[43]  Weinschenk, S., Weiss, C., Benrath, J., Von Baehr, V., Strowitzki, T. and Fei?t, M. (2022) Anti-Inflammatory Characteristics of Local Anesthetics: Inhibition of TNF-α Secretion of Lipopolysaccharide-Stimulated Leucocytes in Human Blood Samples. International Journal of Molecular Sciences, 23, Article 3283.
https://doi.org/10.3390/ijms23063283
[44]  Wang, L., Wang, M., Li, S., et al. (2018) Nebulized Lidocaine Ameliorates Allergic Airway Inflammation via Downregulation of TLR2. Molecular Immunology, 97, 94-100.
https://doi.org/10.1016/j.molimm.2018.03.010
[45]  Zheng, Y., Hou, X. and Yang, S. (2019) Lidocaine Potentiates SOCS3 to Attenuate Inflammation in Microglia and Suppress Neuropathic Pain. Cellular and Molecular Neurobiology, 39, 1081-1092.
https://doi.org/10.1007/s10571-019-00703-6
[46]  Alhayyan, A., McSorley, S., Roxburgh, C., Kearns, R., Horgan, P. and McMillan, D. (2019) The Effect of Anesthesia on the Postoperative Systemic Inflammatory Response in Patients Undergoing Surgery: A Systematic Review and Meta-Analysis. Surgery Open Science, 2, 1-21.
https://doi.org/10.1016/j.sopen.2019.06.001
[47]  Lan, W., Harmon, D.C., Wang, J.H., et al. (2005) Activated Endothelial Interleukin-1β,-6, and-8 Concentrations and Intercellular Adhesion Molecule-1 Expression Are Attenuated by Lidocaine. Anesthesia & Analgesia, 100, 409-412.
https://doi.org/10.1213/01.ANE.0000142113.39092.87
[48]  Maldonado, C., Nguyen, M.D., Bauer, P., Nakamura, S., Khundmiri, S.J., Perez-Abadia, G., Stowers, H.L., Wu, W.J. and Tang, X.L. (2021) Rapid Lipid Modification of Endothelial Cell Membranes in Cardiac Ischemia/Reperfusion Injury: A Novel Therapeutic Strategy to Reduce Infarct Size. Cardiovascular Drugs and Therapy, 35, 113-123.
https://doi.org/10.1007/s10557-020-07101-x
[49]  Soares, R.O.S., Losada, D.M., Jordani, M.C., évora, P. and Castro-E-Silva, O. (2019) Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. International Journal of Molecular Sciences, 20, Article 5034.
https://doi.org/10.3390/ijms20205034
[50]  Piegeler, T., Votta-Velis, E.G., Bakhshi, F.R., Mao, M., Carnegie, G., Bonini, M.G., Schwartz, D.E., Borgeat, A., Beck-Schimmer, B. and Minshall, R.D. (2014) Endothelial Barrier Protection by Local Anesthetics: Ropivacaine and Lidocaine Block Tumor Necrosis Factor-α-Induced Endothelial Cell Src Activation. Anesthesiology, 120, 1414-1428.
https://doi.org/10.1097/ALN.0000000000000174
[51]  苏泽耿, 叶西就. 利多卡因抑制内皮细胞粘附因子表达进而抑制肝癌细胞粘附脐带静脉内皮细胞[J]. 岭南现代临床外科, 2016, 16(6): 652-656.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133