|
动脉瘤性蛛网膜下腔出血患者磁共振弥散加权成像异常的临床研究
|
Abstract:
目的:分析动脉瘤性蛛网膜下腔出血(Aneurysmal Subarachnoid Hemorrhage, aSAH)患者磁共振弥散加权成像(Diffusion Weighted Imaging, DWI)影像信息,探索其信号异常的相关因素以及与迟发性脑缺血(Delayed Cerebral Ischemia, DCI)的相关性。方法:回顾性分析2020年8月至2023年6月于包头市中心医院神经内科诊断为aSAH的患者,所有患者入院后均行头颅磁共振检查,包括T1、T2序列及DWI序列,根据DWI序列是否存在高信号分为DWI正常组和DWI异常组,采集两组患者临床资料,进行统计分析。结果:1) 共入组42例患者,DWI异常组22例,DWI正常组20例;2) 两组在Fisher分级、Hunt-Hess分级及行是否行脑脊液置换上有显著差异(P < 0.05);3) DWI异常与DCI的发生有显著差异(P < 0.05)。结论:Fisher分级、Hunt-Hess分级是aSAH患者DWI异常发生的危险因素,DWI异常是DCI的危险因素。
Objective: To analyze the diffusion weighted imaging (DWI) image information from patients with aneurysmal subarachnoid hemorrhage (aSAH), to explore the correlation factors of signal abnormality and its correlation with delayed cerebral ischemia (DCI). Methods: Patients diagnosed with aSAH in the Department of Neurology of Baotou Central Hospital from August 2020 to June 2023 were retrospectively analyzed. All patients underwent head magnetic resonance examination after admission, including T1, T2 sequence and DWI sequence. According to the presence of high signal in DWI sequence, they were divided into normal DWI group and abnormal DWI group. The clinical data of the two groups were collected and analyzed statistically. Results: 1) A total of 42 patients were enrolled, including 22 patients with abnormal DWI and 20 patients with normal DWI. 2) There were significant differences in Fisher grading, Hunt-Hess grading and cerebrospinal fluid replacement between the two groups (P < 0.05); 3) There was a significant difference between the abnormality of DWI and the occurrence of DCI (P < 0.05). Conclusion: Fisher grading and Hunt-Hess grading are risk factors for DWI abnormalities in aSAH patients, and DWI abnormalities are risk factors for DCI.
[1] | 医学会神经病学分会, 中华医学会神经病学分会脑血管病学组, 中华医学会, 神经病学分会神经血管介入协作组. 中国蛛网膜下腔出血诊治指南2019 [J]. 中华神经科杂志, 2019, 52(12): 1006-1021. |
[2] | 钟鸣, 赵兵. 全国高分级动脉瘤性蛛网膜下腔出血诊疗策略高峰论坛纪要[J]. 中国脑血管病杂志, 2010, 7(2): 112. |
[3] | Sehba, F.A., Hou, J., Pluta, R.M. and Zhang, J.H. (2012) The Importance of Early Brain Injury after Subarachnoid Hemorrhage. Progress in Neurobiology, 97, 14-37. https://doi.org/10.1016/j.pneurobio.2012.02.003 |
[4] | Chen, S., Feng, H., Sherchan, P., et al. (2014) Controversies and Evolving New Mechanisms in Subarachnoid Hemorrhage. Progress in Neurobiology, 115, 64-91. https://doi.org/10.1016/j.pneurobio.2013.09.002 |
[5] | Albert-Weissenberger, C., Hopp, S., Nieswandt, B., et al. (2019) How Is the Formation of Microthrombi after Traumatic Brain Injury Linked to Inflammation? Journal of Neuroimmunology, 326, 9-13. https://doi.org/10.1016/j.jneuroim.2018.10.011 |
[6] | Tso, M.K. and Macdonald, R.L. (2013) Acute Microvascular Changes after Subarachnoid Hemorrhage and Transient Global Cerebral Ischemia. Stroke Research and Treatment, 2013, Article ID: 425281. https://doi.org/10.1155/2013/425281 |
[7] | Ye, H., Ma, Z., Liu, L., et al. (2022) Thrombus Inhibition and Neuroprotection for Ischemic Stroke Treatment through Platelet Regulation and ROS Scavenging. ChemMedChem, 17, e202200317. https://doi.org/10.1002/cmdc.202200317 |
[8] | Weiland, J., Beez, A., Westermaier, T., et al. (2021) Neuroprotective Strategies in Aneurysmal Subarachnoid Hemorrhage (aSAH). International Journal of Molecular Sciences, 22, Article No. 5442. https://doi.org/10.3390/ijms22115442 |
[9] | Suzuki, S., Sobata, E., Ando, A., et al. (1982) [Possible Role of Microthrombus in the Pathogenesis of Cerebral Vasospasm (author’s transl)]. No Shinkei Geka, 10, 45-52. |
[10] | Andereggen, L., Neuschmelting, V., von Gunten, M., et al. (2014) The Role of Microclot Formation in an Acute Subarachnoid Hemorrhage Model in the Rabbit. BioMed Research International, 2014, Article ID: 161702. https://doi.org/10.1155/2014/161702 |
[11] | Suzuki, S., Suzuki, M., Iwabuchi, T., et al. (1983) Role of Multiple Cerebral Microthrombosis in Symptomatic Cerebral Vasospasm: With a Case Report. Neurosurgery, 13, 199-203. https://doi.org/10.1227/00006123-198308000-00018 |
[12] | Pennings, F.A., Bouma, G.J. and Ince, C. (2004) Direct Observation of the Human Cerebral Microcirculation during Aneurysm Surgery Reveals Increased Arteriolar Contractility. Stroke, 35, 1284-1288. https://doi.org/10.1161/01.STR.0000126039.91400.cb |
[13] | 金珂, 吕涛, 金义超, 等. 蛛网膜下腔出血后迟发性脑缺血机制的研究进展[J]. 上海交通大学学报(医学版), 2017, 37(1): 114-117. |
[14] | Bell, J.D., Thomas, T.C., Lass, E., et al. (2014) Platelet-Mediated Changes to Neuronal Glutamate Receptor Expression at Sites of Microthrombosis Following Experimental Subarachnoid Hemorrhage. Journal of Neurosurgery, 121, 1424-1431. https://doi.org/10.3171/2014.3.JNS132130 |
[15] | Gryglewski, R.J., Dembínska-Kie?, A. and Korbut, R. (1978) A Possible Role of Thromboxane A2 (TXA2) and Prostacyclin (PGI2) in Circulation. Acta Biologica et Medica Germanica, 37, 715-723. |
[16] | 郝小可. NETs在蛛网膜下腔出血后微血栓形成和早期脑损伤中的作用和机制研究[D]: [博士学位论文]. 重庆: 中国人民解放军陆军军医大学, 2024. |
[17] | Chen, C., Li, T., Zhao, Y., et al. (2018) Platelet Glycoprotein Receptor Ib Blockade Ameliorates Experimental Cerebral Ischemia-Reperfusion Injury by Strengthening the Blood-Brain Barrier Function and Anti-Thrombo-Inflammatory Property. Brain, Behavior, and Immunity, 69, 255-263. https://doi.org/10.1016/j.bbi.2017.11.019 |