全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有Lévy跳跃驱动的Rosenzweig-MacArthur捕食者–食饵模型的渐近行为
Asymptotic Behavior of Rosenzweig-MacArthur Predator-Prey Model with Lévy Jump Drive

DOI: 10.12677/pm.2024.145196, PP. 409-423

Keywords: Rosenzweig-MacArthur捕食者–食饵模型,Lévy跳跃,灭绝性,平均持久性,平稳分布
Rosenzweig-MacArthur Predator-Prey Model
, Lévy Jumps, Extinction, Average Persistence, Smooth Distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要利用随机分析等相关知识,根据进化稳定策略框架对Rosenzweig-MacArthur捕食者–食饵模型进行改进,证明了具有Lévy跳跃驱动的Rosenzweig-MacArthur捕食者–食饵模型解的存在唯一性和随机有界性,并探究了该模型的灭绝性、持久性和平稳分布。
In this paper, we use stochastic analysis and other related knowledge to improve the Rosenzweig-MacArthur predator-prey model according to the evolutionary stable strategy framework, prove the existence, uniqueness and random boundedness of the solution of the Rosenzweig-MacArthur predator-prey model driven by Lévy jump, and explore the extinction, persistence and stationary distribution of the model.

References

[1]  Lotka, A. (1920) Analytical Note on Certain Rhythmic Relations in Organic Systems. Proceedings of the National Academy of Sciences of the United States of America, 6, 410-415.
https://doi.org/10.1073/pnas.6.7.410
[2]  Volterra, V. (1928) Variations and Fluctuations of the Number of Individuals in Animal Species Living Together. ICES Journal of Marine Science, 3, 3-51.
https://doi.org/10.1093/icesjms/3.1.3
[3]  Lotka, A. (2002) Contribution to the Theory of Periodic Reactions. The Journal of Physical Chemistry A, 14, 271-274.
https://doi.org/10.1021/j150111a004
[4]  Lotka, A. (1956) Elements of Physical Biology. Dover, New York.
[5]  Rosenzweig, M. and MacArthur, R. (1963) Graphical Representation and Stability Conditions of Predator-Prey Interaction. The American Naturalist, 97, 209-223.
https://doi.org/10.1086/282272
[6]  Ducrot, A., Liu, Z. and Magal, P. (2021) Large Speed Traveling Waves for the Rosenzweig-MacArthur Predator-Prey Model with Spatial Diffusion. Physica D: Nonlinear Phenomena, 415, Article ID: 132730.
https://doi.org/10.1016/j.physd.2020.132730
[7]  Sugie, J. and Saito, Y. (2012) Uniqueness of Limit Cycles in a Rosenzweig-MacArthur Model with Prey Immigration. SIAM Journal on Applied Mathematics, 72, 299-316.
https://doi.org/10.1137/11084008X
[8]  Dalziel, B., Thomann, E., Medlock, J. and Leenheer, P.D. (2020) Global Analysis of a Predator-Prey Model with Variable Predator Search Rate. Journal of Mathematical Biology, 81, 159-183.
https://doi.org/10.1007/s00285-020-01504-y
[9]  Cortez, M. (2015) Coevolution-Driven Predator-Prey Cycles: Predicting the Characteristics of Eco-Coevolutionary Cycles Using Fast-Slow Dynamical Systems Theory. Theoretical Ecology, 8, 369-382.
https://doi.org/10.1007/s12080-015-0256-x
[10]  Zhang, Y., Koura, Y.H. and Su, Y. (2019) Dynamic of a Delayed Predator-Prey Model with Application to Network ‘Users’ Data Forwarding. Scientific Reports, 9, Article No. 12535.
https://doi.org/10.1038/s41598-019-48975-8
[11]  Beay, L., Suryanto, A. and Darti, I. (2020) Hopf Bifurcation and Stability Analysis of the Rosenzweig-MacArthur Predator-Prey Model with Stage-Structure in Prey. Mathematical Biosciences and Engineering, 17, 4080-4097.
https://doi.org/10.3934/mbe.2020226
[12]  Grunert, K., Holden, H., Jakobsen, E. and Stenseth, N. (2021) Evolutionarily Stable Strategies in Stable and Periodically Fluctuating Populations: the Rosenzweig-MacArthur Predator-Prey Model. Proceedings of the National Academy of Sciences of the United States of America, 4, e2017463118.
https://doi.org/10.1073/pnas.2017463118
[13]  Arnold, L. (2013) Random Dynamical Systems. Springer, Berlin.
[14]  Applebaum, D. (2009) Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511809781
[15]  Yuan, S. and Wang, Z. (2023) Bifurcation and Chaotic Behavior in Stochastic Rosenzweig-MacArthur Prey-Predator Model with Non-Gaussian Stable Lévy Noise. International Journal of Non-Linear Mechanics, 150, Article ID: 104339.
https://doi.org/10.1016/j.ijnonlinmec.2022.104339
[16]  Zhang, X., Li, W., Liu, M. and Wang, K. (2015) Dynamics of A Stochastic Holling II One-Predator Two-Prey System with Jumps. Physica A: Statistical Mechanics and its Applications, 421, 571-582.
https://doi.org/10.1016/j.physa.2014.11.060
[17]  Liu, M. and Wang, K. (2014) Stochastic Lotka-Volterra Systems with Lévy Noise. Journal of Mathematical Analysis and Applications, 410, 750-763.
https://doi.org/10.1016/j.jmaa.2013.07.078
[18]  Bao, J., Mao, X., Yin, G. and Yuan, C. (2011) Competitive Lotka-Volterra Population Dynamics with Jumps. Nonlinear Analysis: Theory, Methods & Applications, 74, 6601-6616.
https://doi.org/10.1016/j.na.2011.06.043
[19]  Akdim, K., Ez-Zetouni, A., Danane, J. and Allali, K. (2020) Stochastic Viral Infection Model with Lytic and Nonlytic Immune Responses Driven by Lévy Noise. Physica A: Statistical Mechan, 549, Article ID: 124367.
https://doi.org/10.1016/j.physa.2020.124367
[20]  Zhao, Y. and Yuan, S. (2016) Stability in Distribution of a Stochastic Hybrid Competitive Lotka-Volterra Model with Lévy Jumps. Chaos, Solitons & Fractals, 85, 98-109.
https://doi.org/10.1016/j.chaos.2016.01.015
[21]  Liu, Q. and Chen, Q. (2014) Analysis of a Stochastic Delay Predator-Prey System with Jumps in a Polluted Environment. Applied Mathematics and Computation, 242, 90-100.
https://doi.org/10.1016/j.amc.2014.05.033
[22]  王克. 随机生物数学模型[M]. 北京: 科学出版社, 2010.
[23]  Li, X. and Mao, X. (2009) Population Dynamical Behavior of Non-Autonomous Lotka-Volterra Competitivesystem with Random Perturbation. Discrete and Continuous Dynamical Systems, 24, 523-545.
https://doi.org/10.3934/dcds.2009.24.523
[24]  Liu, K. (2020) Stationary Distributions of Second Order Stochastic Evolution Equations with Memory in Hilbert Spaces. Stochastic Processes and Their Applications, 130, 366-393.
https://doi.org/10.1016/j.spa.2019.03.015

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133