|
一种基于对角化的抛物型最优控制问题的预处理子
|
Abstract:
本文研究了求解抛物型偏微分方程约束的最优控制问题,利用对角化技巧,提出了一个新的基于对角化的预处理子,用于快速求解大型稀疏方程组。数值实验说明了预处理子的良好加速效果和稳定性。
In this paper, we study the solution of the optimal control problem constrained by parabolic partial differential equations. By using the diagonalization technique, we propose a new preconditioner based on diagonalization to quickly calculate the large sparse equation system. Numerical experiments demonstrate the good acceleration effect and stability of the preconditioner.
[1] | Kunisch, K. and Rund, A. (2015) Time Optimal Control of the Monodomain Model in Cardiac Electrophysiology. IMA Journal of Applied Mathematics, 80, 1664-1683. https://doi.org/10.1093/imamat/hxv010 |
[2] | Bryson, A.E. (1996) Optimal control-1950 to 1985. IEEE Control Systems Magazine, 16, 26-33. https://doi.org/10.1109/37.506395 |
[3] | Sargent, R.W.H. (2000) Optimal Control. Journal of Computational and Applied Mathematics, 124, 361-371. https://doi.org/10.1016/S0377-0427(00)00418-0 |
[4] | Liu, J. and Wang, Z. (2019) Non-Commutative Discretize-Then-Optimize Algorithms for Elliptic PDE-Constrained Optimal Control Problems. Journal of Computational and Applied Mathematics, 362, 596-613. https://doi.org/10.1016/j.cam.2018.07.028 |
[5] | Maday, Y. and R?nquist, E.M. (2008) Parallelization in Time through Tensor-Product Space-Time Solvers. Comptes Rendus. Mathématique, 346, 113-118. https://doi.org/10.1016/j.crma.2007.09.012 |
[6] | Gander, M.J., Liu, J., Wu, S.L., et al. (2020) Paradiag: Parallel-in-Time Algorithms Based on the Diagonalization Technique. arXiv: 2005.09158. |
[7] | Golub, G.H., Van Loan, C.F. (2013) Matrix Computations. JHU Press, Baltimore. https://doi.org/10.56021/9781421407944 |
[8] | Saad. Y. (2003) Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, Philadelphia. https://doi.org/10.1137/1.9780898718003 |
[9] | Wu, S.L. and Zhou, T. (2020) Diagonalization-Based Parallel-in-Time Algorithms for Parabolic PDE-Constrained Optimization Problems. ESAIM: Control, Optimisation and Calculus of Variations, 26, 88. https://doi.org/10.1051/cocv/2020012 |
[10] | Liu, J., Wu, S.L. (2020) A Fast Block α-Circulant Preconditoner for All-at-Once Systems from Wave Equations. SIAM Journal on Matrix Analysis and Applications, 41, 1912-1943. https://doi.org/10.1137/19M1309869 |
[11] | Lin, X.L. and Wu, S.L. (2021) A Parallel-in-Time Preconditioner for Crank-Nicolson Discretization of a Parabolic Optimal Control Problem. arXiv: 2109.12524. |
[12] | Gander, M.J. and Palitta, D. (2024) A New Paradiag Time-Parallel Time Integration Method. SIAM Journal on Scientific Computing, 46, A697-A718. https://doi.org/10.1137/23M1568028 |
[13] | Bouillon, A., Samaey, G. and Meerbergen, K. (2023) On Generalized Preconditioners for Time-Parallel Parabolic Optimal Control. arXiv: 2302.06406. |
[14] | McDonald, E., Pestana, J. and Wathen, A. (2018) Preconditioning and Iterative Solution of All-at-Once Systems for Evolutionary Partial Differential Equations. SIAM Journal on Scientific Computing, 40, A1012-A1033. https://doi.org/10.1137/16M1062016 |
[15] | Wu, S.L., Zhou, T. and Zhou, Z. (2022) A Uniform Spectral Analysis for a Preconditioned All-at-Once System from First-Order and Second-Order Evolutionary Problems. SIAM Journal on Matrix Analysis and Applications, 43, 1331-1353. https://doi.org/10.1137/21M145358X |
[16] | Liu, J., Wang, X.S., Wu, S.L., et al. (2022) A Well-Conditioned Direct PinT Algorithm for First-and Second-Order Evolutionary Equations. Advances in Computational Mathematics, 48, 16. https://doi.org/10.1007/s10444-022-09928-4 |