全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三维不可压MHD方程在变指数Lebesgue空间中的适定性
Well-Posedness for 3D Incompressible MHD Equations in Lebesgue Spaces with Variable Exponents

DOI: 10.12677/aam.2024.135220, PP. 2331-2341

Keywords: MHD方程,变指数Lebesgue空间,适定性
MHD Equations
, Lebesgue Spaces with Variable Exponents, Well-Posedness

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文主要考虑了三维不可压MHD方程在变指数Lebesgue空间中的适定性。通过克服变指数Lebesgue空间与经典的Lebesgue空间不同所带来的困难,建立了三维不可压MHD方程在空间?3p(?)(?3,L∞(0,∞))中小初值问题的整体适定性,并在空间Lp(?)([0,T],Lq(?3))中证明了大初值问题的局部适定性。
In this paper, we are mainly concerned with the well-posedness of the 3D incompressible MHD equations in Lebesgue spaces with variable exponents. By overcoming some difficulties caused by the differences between the Lebesgue spaces with variable exponents and the usual one, we establish, for the 3D incompressible MHD equations, the global well-posedness in space?3p(?)(?3,L∞(0,∞))with small initial data, and the local well-posedness inLp(?)([0,T],Lq(?3))with general initial data.

References

[1]  Leray, J. (1934) Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Mathematica, 63, 193-248.
https://doi.org/10.1007/BF02547354
[2]  Hopf, E. (1950) über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet. Mathematische Nachrichten, 4, 213-231.
https://doi.org/10.1002/mana.3210040121
[3]  Kato, T. and Fujita, H. (1964) On the Navier-Stokes Initial Value Problem. Archive for Rational Mechanics and Analysis, 16, 269-315.
https://doi.org/10.1007/BF00276188
[4]  Kato, T. (1984) Strong Lp-Solutions of the Navier-Stokes Equation in Rm with Applications to Weak Solutions. Mathematische Zeitschrift, 187, 471-480.
https://doi.org/10.1007/BF01174182
[5]  Giga, Y. (1986) Solutions for Semilinear Parabolic Equations in Lp and Regularity of Weak Solutions of the Navier-Stokes System. Journal of Differential Equations, 62, 186-212.
https://doi.org/10.1016/0022-0396(86)90096-3
[6]  Cannone, M. (1997) A Generalization of a Theorem by Kato on Navier-Stokes Equations. Revista Matemática Iberoamericana, 13, 515-541.
https://doi.org/10.4171/rmi/229
[7]  Planchon, F. (1996) Global Strong Solutions in Sobolevor Lebesgue Spaces to the Incompressible Navier-Stokes Equations in R3. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 13, 319-336.
https://doi.org/10.1016/s0294-1449(16)30107-x
[8]  Iwabuchi, T. (2010) Navier-Stokes Equations and Nonlinear Heat Equations in Modulation Spaces with Negative Derivative Indices. Journal of Differential Equations, 248, 1972-2002.
https://doi.org/10.1016/j.jde.2009.08.013
[9]  Koch, H. and Tataru, D. (2001) Well-Posedness for the Navier-Stokes Equations. Advances in Mathematics, 157, 22-35.
https://doi.org/10.1006/aima.2000.1937
[10]  Duvaut, G. and Lions, J.L. (1972) Inéquations en thermoélasticité et magnétohydrodynamique. Archive for Rational Mechanics and Analysis, 46, 241-279.
https://doi.org/10.1007/BF00250512
[11]  Sermange, M. and Temam, R. (1983) Some Mathematical Questions Related to the MHD Equations. Communications on Pure and Applied Mathematics, 36, 635-664.
https://doi.org/10.1002/cpa.3160360506
[12]  Kozono, H. (1989) Weak and Classical Solutions of the Two-Dimensional Magnetohydrodynamic Equations. Tohoku Mathematical Journal, 41, 471-488.
https://doi.org/10.2748/tmj/1178227774
[13]  Miao, C. and Yuan, B. (2009) On the Well‐Posedness of the Cauchy Problem for an MHD System in Besov Spaces. Mathematical Methods in the Applied Sciences, 32, 53-76.
https://doi.org/10.1002/mma.1026
[14]  Liu, Q. and Cui, S. (2012) Well-Posedness for the Incompressible Magneto-Hydrodynamic System on Modulation Spaces. Journal of Mathematical Analysis and Applications, 389, 741-753.
https://doi.org/10.1016/j.jmaa.2011.12.015
[15]  Miao, C., Yuan, B. and Zhang, B. (2007) Well‐Posedness for the Incompressible Magneto‐Hydrodynamic System. Mathematical Methods in the Applied Sciences, 30, 961-976.
https://doi.org/10.1002/mma.820
[16]  Liu, Q., Zhao, J. and Cui, S. (2012) Existence and Regularizing Rate Estimates of Solutions to a Generalized Magnetohydrodynamic System in Pseudomeasure Spaces. Annali di Matematica Pura ed Applicata, 191, 293-309.
https://doi.org/10.1007/s10231-010-0184-8
[17]  Liu, Q. and Zhao, J. (2014) Global Well-Posedness for the Generalized Magneto-Hydrodynamic Equations in the Critical Fourier-Herz Spaces. Journal of Mathematical Analysis and Applications, 420, 1301-1315.
https://doi.org/10.1016/j.jmaa.2014.06.031
[18]  Liu, F., Xi, S., Zeng, Z., et al. (2022) Global Mild Solutions to Three-Dimensional Magnetohydrodynamic Equations in Morrey Spaces. Journal of Differential Equations, 314, 752-807.
https://doi.org/10.1016/j.jde.2021.12.027
[19]  Wang, Y. and Wang, K. (2014) Global Well-Posedness of the Three Dimensional Magnetohydrodynamics Equations. Nonlinear Analysis: Real World Applications, 17, 245-251.
https://doi.org/10.1016/j.nonrwa.2013.12.002
[20]  Tan, Z., Wu, W. and Zhou, J. (2018) Existence and Uniqueness of Mild Solutions to the Magneto-Hydro-Dynamic Equations. Applied Mathematics Letters, 77, 27-34.
https://doi.org/10.1016/j.aml.2017.09.013
[21]  Wang, S., Ren, Y. and Xu, F. (2018) Analyticity of Mild Solution for the 3D Incompressible Magneto-Hydrodynamics Equations in Critical Spaces. Acta Mathematica Sinica, 34, 1731-1741.
https://doi.org/10.1007/s10114-018-8043-4
[22]  Chamorro, D. and Vergara-Hermosilla, G. (2023) Lebesgue Spaces with Variable Exponent: Some Applications to the Navier-Stokes Equations. Preprint.
https://doi.org/10.21203/rs.3.rs-3365250/v1
[23]  Orlicz, W. (1931) über konjugierte exponentenfolgen. Studia Mathematica, 3, 200-211.
https://doi.org/10.4064/sm-3-1-200-211
[24]  Musielak, J. (2006) Orlicz Spaces and Modular Spaces. Springer Berlin, Heidelberg.
https://doi.org/10.1007/BFb0072210
[25]  Musielak, J. and Orlicz, W. (1959) On Modular Spaces. Studia Mathematica, 18, 49-65.
https://doi.org/10.4064/sm-18-1-49-65
[26]  Nakano, H. (1950) Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd., Tokyo.
[27]  Nakano, H. (1951) Topology and Linear Topological Spaces. Maruzen Co., Ltd., Tokyo.
[28]  Diening, L., Harjulehto, P., H?st?, P., et al. (2011) Lebesgue and Sobolev Spaces with Variable Exponents. Springer Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-18363-8
[29]  Grafakos, L. (2008) Classical Fourier Analysis. Springer, New York.
https://doi.org/10.1007/978-0-387-09432-8
[30]  Chamorro, D. (2022) Mixed Sobolev-Like Inequalities in Lebesgue Spaces of Variable Exponents and in Orlicz Spaces. Positivity, 26, Article No. 5.
https://doi.org/10.1007/s11117-022-00882-5
[31]  Cruz-Uribe, D.V. and Fiorenza, A. (2013) Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Birkh?user, Basel.
https://doi.org/10.1007/978-3-0348-0548-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133