全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有Logistic源的三维趋化模型解的大时间行为
Large Time Behavior for a Three-Dimensional Chemotaxis System with Logistic Source

DOI: 10.12677/AAM.2024.135211, PP. 2221-2231

Keywords: 趋化模型,Logistic源,能量估计,衰减估计
Chemotaxis System
, Logistic Source, Energy Estimates, Decay Estimates

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了一类在全空间R3上具有奇性和Logistic源项的趋化模型解的大时间行为,并得到了解 的衰减估计。 通过一类Cole-Hopf变换,将有奇性的趋化模型变换成无奇性的趋化模型。 然后采 用能量估计的方法得到变换后模型的全局解的衰减估计。
In this paper, we study the large time behavior of a singular chemotaxis system with logistic source in three dimensional whole spaces and obtain the decay estimates for the solutions. The singular chemotaxis is converted to a non-singular hyperbolic system by a Cole-Hopf type transformation. Then the decay estimates of the global solutions of the transformed system are established by using the method of energy estimates.

References

[1]  Levine, H.A., Sleeman, B.D. and Nilsen-Hamilton, M. (2000) A Mathematical Model for the Roles of Pericytes and Macrophages in the Initiation of Angiogenesis. I. The Role of Protease Inhibitors in Preventing Angiogenesis. Mathematical Biosciences, 168, 77-115.
https://doi.org/10.1016/S0025-5564(00)00034-1
[2]  Keller, E.F. and Segel, L.A. (1971) Traveling Bands of Chemotactic Bacteria: A Theoretical Analysis. Journal of Theoretical Biology, 30, 235-248.
https://doi.org/10.1016/0022-5193(71)90051-8
[3]  Levine, H.A. and Sleeman, B.D. (1997) A System of Reaction Diffusion Equations Arising in the Theory of Reinforced Random Walks. SIAM Journal on Applied Mathematics, 57, 683-730.
https://doi.org/10.1137/S0036139995291106
[4]  Levine, H.A., Pamuk, S., Sleeman, B.D., et al. (2001) Mathematical Modeling of Capillary Formation and Development in Tumor Angiogenesis: Penetration into the Stroma. Bulletin of Mathematical Biology, 63, 801-863.
https://doi.org/10.1006/bulm.2001.0240
[5]  Wang, Z. and Hillen, T. (2007) Shock Formation in a Chemotaxis Model. Mathematical Meth- ods in the Applied Sciences, 31, 45-70.
https://doi.org/10.1002/mma.898
[6]  Zhang, M. and Zhu, C. (2007) Global Existence of Solutions to a Hyperbolic-Parabolic System. Proceedings of the American Mathematical Society, 135, 1017-1027.
https://doi.org/10.1090/S0002-9939-06-08773-9
[7]  Guo, J., Xiao, J., Zhao, H., et al. (2009) Global Solutions to a Hyperbolic-Parabolic Coupled System with Large Initial Data. Acta Mathematica Scientia, 29, 629-641.
https://doi.org/10.1016/S0252-9602(09)60059-X
[8]  Li, T., Pan, R. and Zhao, K. (2012) Global Dynamics of a Hyperbolic-Parabolic Model Arising from Chemotaxis. SIAM Journal on Applied Mathematics, 72, 417-443.
https://doi.org/10.1137/110829453
[9]  Li, D., Li, T. and Zhao, K. (2011) On a Hyperbolic-Parabolic System Modeling Chemotaxis. Mathematical Models and Methods in Applied Sciences, 21, 1631-1650.
https://doi.org/10.1142/S0218202511005519
[10]  Hao, C. (2012) Global Well-Posedness for a Multidimensional Chemotaxis Model in Critical Besov Spaces. Zeitschrift fu¨r Angewandte Mathematik und Physik, 63, 825-834.
https://doi.org/10.1007/s00033-012-0193-0
[11]  Deng, C. and Li, T. (2014) Well-Posedness of a 3D Parabolic-Hyperbolic Keller-Segel System in the Sobolev Space Framework. Journal of Differential Equations, 257, 1311-1332.
https://doi.org/10.1016/j.jde.2014.05.014
[12]  Tao, Y., Wang, L. and Wang, Z.A. (2013) Large-Time Behavior of a Parabolic-Parabolic Chemotaxis Model with Logarithmic Sensitivity in One Dimension. Discrete and Continuous Dynamical Systems-B, 18, 821-845.
https://doi.org/10.3934/dcdsb.2013.18.821
[13]  Li, H. and Zhao, K. (2015) Initial-Boundary Value Problems for a System of Hyperbolic Balance Laws Arising from Chemotaxis. Journal of Differential Equations, 258, 302-338.
https://doi.org/10.1016/j.jde.2014.09.014
[14]  Wang, Z.A., Xiang, Z. and Yu, P. (2016) Asymptotic Dynamics on a Singular Chemotaxis System Modeling Onset of Tumor Angiogenesis. Journal of Differential Equations, 260, 2225- 2258.
https://doi.org/10.1016/j.jde.2015.09.063
[15]  Song, X. and Li, J. (2023) Convergence Rate of Solutions towards Spiky Steady State for the Keller-Segel System with Logarithmic Sensitivity. Nonlinear Analysis, 232, Article 113284.
https://doi.org/10.1016/j.na.2023.113284
[16]  Zeng, Y. and Zhao, K. (2019) On the Logarithmic Keller-Segel-Fisher/KPP System. Discrete & Continuous Dynamical Systems-A, 39, 5365-5402.
https://doi.org/10.3934/dcds.2019220
[17]  Zeng, Y. and Zhao, K. (2020) Optimal Decay Rates for a Chemotaxis Model with Logis- tic Growth, Logarithmic Sensitivity and Density-Dependent Production/Consumption Rate. Journal of Differential Equations, 268, 1379-1411.
https://doi.org/10.1016/j.jde.2019.08.050
[18]  Li, T. and Wang, Z.A. (2022) Traveling Wave Solutions of a Singular Keller-Segel System with Logistic Source. Mathematical Biosciences and Engineering, 19, 8107-8131.
https://doi.org/10.3934/mbe.2022379
[19]  江里邦, 彭红云. 具有Logistic源的三维趋化模型解适定性研究[J]. 理论数学, 2024, 14(5).
[20]  Stein, E.M. (1970) Singular Integrals and Differentiability Properties of Functions. Princeton University Press, University, NJ, 119.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133