|
非均匀边坡稳定的光滑有限元极限分析
|
Abstract:
非均匀层状边坡稳定是岩土工程中的重要问题之一。基于理想塑性上限和下限的极限分析方法是分析此类问题的常用方法之一。近期提出的基于混合常应力–光滑应变单元的极限分析方法(MCSE-LA)在克服体积锁定和计算性能(精度、效率以及收敛性)方面已被证明比传统有限元极限分析方法具有一定的优势,并且可以同时获得极限状态下的应力场和速度场。基于此,首先通过与经典有限元极限分析对比分析,验证MCSE-LA在非均匀边坡稳定分析中的可行性;其次,针对含软弱层边坡进行参数分析,发现软弱层的黏聚力对安全系数的影响更显著,而软弱层的摩擦角则对破坏机构特征的影响更明显;同时说明自适应的MCSE-LA可以较好地分析实际边坡的稳定性,为边坡工程的稳定性评价提供了一种有效的方法。
The stability of inhomogeneous layered slopes is one of the crucial issues in geotechnical engineering. Among the commonly used methods for analyzing such problems is the limit analysis approach based on the upper and lower bounds of plasticity. Recently, a novel limit analysis method (MCSE-LA) based on the mixed constant stress-smoothed strain element has been proposed. It has been demonstrated to have certain advantages over traditional finite element limit analysis methods in overcoming volume locking and computational performance (accuracy, efficiency, and convergence), and can simultaneously provide stress and velocity fields at the limit state. Firstly, by comparing with classical finite element limit analysis, the feasibility of MCSE-LA in analyzing the stability of inhomogeneous slopes is verified. Secondly, parameter analysis is conducted for slopes containing weak layers, revealing that the cohesion of weak layers has a more significant impact on the safety factor, while the friction angle of weak layers has a more noticeable effect on the characteristics of failure mechanisms. It is also noted that the adaptive nature of MCSE-LA can effectively analyze the stability of actual slopes, providing an efficient method for evaluating slope stability in slope engineering.
[1] | Keefer, D.K. and Larsen, M.C. (2007) Assessing Landslide Hazards. Science, 316, 1136-1138. https://doi.org/10.1126/science.1143308 |
[2] | 肖锐铧, 王思敬, 贺小黑, 张晓平, 饶枭宇, 罗斌. 非均质边坡多级稳定性分析方法[J]. 岩土工程学报, 2013, 35(6): 1062-1068. |
[3] | Drucker, D.C. and Prager, W. (1952) Soil Mechanics and Plastic Analysis or Limit Design. Quarterly of Applied Mathematics, 10, 157-165. https://doi.org/10.1090/qam/48291 |
[4] | Chen, W.F. (1975) Limit Analysis and Soil Plasticity. Elsevier, Amsterdam. |
[5] | Kumar, J. and Samui, P. (2006) Stability Determination for Layered Soil Slopes Using the Upper Bound Limit Analysis. Geotechnical and Geological Engineering, 24, 1803-1819. https://doi.org/10.1007/s10706-006-7172-1 |
[6] | 孙志彬, 潘秋景, 杨小礼, 侯超群, 尚熳廷. 非均质边坡上限分析的离散机构及应用[J]. 岩石力学与工程学报, 2017, 36(7): 1680-1688. |
[7] | 田泽润, 张彦洪, 周茂定, 等. 双层均质边坡临界高度研究及其稳定性分析[J]. 岩土工程学报, 2023, 45(2): 426-432, 444. |
[8] | Huang, M., Wang, H., Sheng, D. and Liu, Y. (2013) Rotational-Translational Mechanism for the Upper Bound Stability Analysis of Slopes with Weak Interlayer. Computers and Geotechnics, 53, 133-141. https://doi.org/10.1016/j.compgeo.2013.05.007 |
[9] | Michalowski, R.L. (1995) Slope Stability Analysis: A Kinematical Approach. Géotechnique, 45, 283-293. https://doi.org/10.1680/geot.1995.45.2.283 |
[10] | 陈祖煜. 土力学经典问题的极限分析上、下限解[J]. 岩土工程学报, 2002, 24(1): 1-11. |
[11] | Chen, Z., Wang, X., Haberfield, C., Yin, J.-H. and Wang, Y. (2001) A Three-Dimensional Slope Stability Analysis Method Using the Upper Bound Theorem Part I: Theory and Methods. International Journal of Rock Mechanics & Mining Sciences, 38, 369-378. https://doi.org/10.1016/S1365-1609(01)00012-0 |
[12] | Chen, Z., Wang, J., Wang, Y., Yin, J.-H. and Haberfield, C. (2001) A Three-Dimensional Slope Stability Analysis Method Using the Upper Bound Theorem Part II: Numerical Approaches, Applications and Extensions. International Journal of Rock Mechanics & Mining Sciences, 38, 379-397. https://doi.org/10.1016/S1365-1609(01)00013-2 |
[13] | Farzaneh, O. and Askari, F. (2003) Three-Dimensional Analysis of Nonhomogeneous Slopes. Journal of Geotechnical and Geoenvironmental Engineering, 129, 137-145. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:2(137) |
[14] | Zuo, J.Y., Wang, B.T., Li, W.W. and Zhang, H.X. (2022) Upper-Bound Solution for the Stability Analysis of Layered Slopes. Journal of Engineering Mechanics, 148, Article ID: 04022007. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002087 |
[15] | 中华人民共和国住房和城乡建设部. GB 50330-2013建筑边坡工程技术规范[S]. 北京: 中国建筑工业出版社, 2013. |
[16] | Sloan, S.W. and Kleeman, P.W. (1995) Upper Bound Limit Analysis Using Discontinuous Velocity Fields. Computer Methods in Applied Mechanics and Engineering, 127, 293-314. https://doi.org/10.1016/0045-7825(95)00868-1 |
[17] | Makrodimopoulos, A. and Martin, C.M. (2007) Upper Bound Limit Analysis Using Simplex Strain Elements and Second-Order Cone Programming. International Journal for Numerical and Analytical Methods in Geomechanics, 31, 835-865. https://doi.org/10.1002/nag.567 |
[18] | Kim, J., Salgado, R. and Lee, J. (2002) Stability Analysis of Complex Soil Slopes using Limit Analysis. Journal of Geotechnical and Geoenvironmental Engineering, 128, 546-557. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:7(546) |
[19] | Qian, Z.G., Li, A.J., Merifield, R.S. and Lyamin, A.V. (2015) Slope Stability Charts for Two-Layered Purely Cohesive Soils Based on Finite-Element Limit Analysis Methods. International Journal of Geomechanics, 15, Article ID: 06104022. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000438 |
[20] | Lim, K., Li, A.J. and Lyamin, A.V. (2015) Three-Dimensional Slope Stability Assessment of Two-Layered Undrained Clay. Computers and Geotechnics, 70, 1-17. https://doi.org/10.1016/j.compgeo.2015.07.011 |
[21] | Krabbenhoft, K., Lyamin, A.V., Hjiaj, M. and Sloan, S.W. (2005) A New Discontinuous Upper Bound Limit Analysis Formulation. International Journal for Numerical Methods in Engineering, 63, 1069-1088. https://doi.org/10.1002/nme.1314 |
[22] | 周锡文, 刘锋涛, 戴北冰, 张澄博, 张金鹏. 基于混合常应力-光滑应变单元的极限分析方法[J]. 岩土力学, 2022, 43(6): 1660-1670. |
[23] | Liu, G.R. and Nguyen, T.T. (2010) Smoothed Finite Element Methods. Taylor & Francis, Boca Raton. |
[24] | 刘锋涛, 周锡文, 张澄博, 等. 基于两级光滑边域混合单元的弹塑性二阶锥规划方法[J]. 岩土工程学报, 2023, 45(5): 1045-1053. |
[25] | Zhou, X.-W., Liu, F.-T., Yin, Z.-Y., Jin, Y.-F. and Zhang, C.-B. (2022) A Mixed Constant-Stress Smoothed-Strain Element with a Cubic Bubble Function for Elastoplastic Analysis Using Second-Order Cone Programming. Computers and Geotechnics, 145, Article ID: 104701. https://doi.org/10.1016/j.compgeo.2022.104701 |
[26] | Zhou, X.-W., Liu, F.-T., Jin, Y.-F., Yin, Z.-Y. and Zhang, C.-B. (2022) A Volumetric Locking-Free Stable Node-Based Smoothed Finite Element Method for Geomechanics. Computers and Geotechnics, 149, Article ID: 104856. https://doi.org/10.1016/j.compgeo.2022.104856 |
[27] | Krabbenh?ft, K., Lyamin, A.V. and Sloan, S.W. (2007) Formulation and Solution of Some Plasticity Problems as Conic Programs. International Journal of Solids and Structures, 44, 1533-1549. https://doi.org/10.1016/j.ijsolstr.2006.06.036 |
[28] | Wu, C.T. and Hu, W. (2012) A Two-Level Mesh Repartitioning Scheme for the Displacement-Based Lower-Order Finite Element Methods in Volumetric Locking-Free Analyses. Computational Mechanics, 50, 1-18. https://doi.org/10.1007/s00466-011-0665-7 |
[29] | Shewchuk, J.R. (2002) Delaunay Refinement Algorithms for Triangular Mesh Generation. Computational Geometry, 22, 21-74. https://doi.org/10.1016/S0925-7721(01)00047-5 |
[30] | 王根龙, 伍法权, 张军慧. 非均质土坡稳定性分析评价的刚体单元上限法[J]. 岩石力学与工程学报, 2008, 27(z2): 3425-3430. |
[31] | Deng, D., Li, L. and Zhao, L. (2019) Stability Analysis of a Layered Slope with Failure Mechanism of Composite Slip Surface. International Journal of Geomechanics, 19, Article ID: 04019050. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001417 |
[32] | Greco, V.R. (1996) Efficient Monte Carlo Technique for Locating Critical Slip Surface. Journal of Geotechnical Engineering, 122, 517-525. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(517) |
[33] | Liu, F. and Zhao, J. (2013) Limit Analysis of Slope Stability by Rigid Finite-Element Method and Linear Programming Considering Rotational Failure. International Journal of Geomechanics, 13, 827-839. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000283 |
[34] | 刘锋涛, 张绍发, 戴北冰, 等. 边坡稳定分析刚体有限元上限法的锥规划模型[J]. 岩土力学, 2019, 40(10): 4084-4091, 4100. |
[35] | 贾苍琴, 黄齐武, 王贵和. 边坡稳定性分析的非连续面拓扑优化技术[J]. 岩土工程学报, 2018, 40(4): 655-664. |