全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

von Neumann代数上的*-Lie三重导子
*-Lie Triple Derivation on von Neumann Algebras

DOI: 10.12677/aam.2024.135189, PP. 2020-2028

Keywords: 非线性-Lie三重导子,-Lie三重导子,von Neumann代数
Nonlinear -Lie Triple Derivation
, -Lie Triple Derivation, von Neumann Algebra

Full-Text   Cite this paper   Add to My Lib

Abstract:

算子代数上的导子作为算子理论研究的一个重要部分,得到国内外学者的广泛关注。近年来,学者们相继引入Lie导子、*-Lie导子、*-Lie三重导子等映射。然而Lie导子是Lie三重导子,但反过来Lie三重导子不一定是Lie导子。本文研究和探讨von Neumann代数上的*-Lie三重导子是否为Lie导子。证明了在不含I1型中心直和项的有限von Neumann代数之间的每一个非线性*-Lie三重导子是一个可加*-导子。
As an important part of operator theory research, derivations on operator algebras have received widespread attention from scholars both domestically and internationally. In recent years, scholars have successively introduced mappings such as local Lie derivation, *-Lie derivation, *-Lie triple derivation. However, the Lie derivation is a Lie triple derivation; but conversely, the Lie triple derivation may not necessarily be a Lie derivation. This thesis studies and explores whether the *-Lie triple derivation on von Neumann algebra is a Lie derivation. We show that each nonlinear *-Lie triple derivation between von Neumann algebras without central summands of type I1 is an additive *-derivation.

References

[1]  Yu, W.Y. and Zhang, J.H. (2012) Nonlinear ?-Derivations on Factor von Neumann Algebras. Linear Algebra and Its Applications, 437, 1979-1991.
https://doi.org/10.1016/j.laa.2012.05.032
[2]  Kong, L. and Zhang, J.H. () Nonlinear Skew Lie Derivations on Prime ?-Rings. Indian Journal of Pure and Applied Mathematics, 54, 475-484.
https://doi.org/10.1007/s13226-022-00269-y
[3]  Jing, W. (2016) Nonlinear ?-Lie Derivations of Standard Operator Algebras. Quaestiones Mathematicae, 39, 1037-1046.
https://doi.org/10.2989/16073606.2016.1247119
[4]  Miers, C.R. (1978) Lie Triple Derivations of von Neumann Algebras. Proceedings of the American Mathematical Society, Los Angeles, 11 May 1922, 57-61.
[5]  Li, J. and Shen, Q. (2012) Characterizations of Lie Higher and Lie Triple Derivations on Triangular Algebras. Journal of the Korean Mathematical Society, 49, 419-433.
https://doi.org/10.4134/JKMS.2012.49.2.419
[6]  Ji, P.S., Liu, R.R. and Zhao, Y.Z. (2012) Nolinear Lie Triple Derivations of Triangualr Algebras. Linear and Multilinear Algebra, 60, 1155-1164.
https://doi.org/10.1080/03081087.2011.652109
[7]  Sun, S.L. and Ma, X.F. (2012) Lie Triple Derivations of Nest Algebras on Banach Spaces. Linear Algebra and Its Applications, 436, 3443-3462.
https://doi.org/10.1016/j.laa.2011.12.018
[8]  Yu, W.Y. and Zhang, J.H. (2013) Lie Triple Derivations of CSL Algebras. International Journal of Theoretical Physics, 52, 2118-2127.
https://doi.org/10.1007/s10773-013-1507-5
[9]  Li, C.J., Fang, X.C. and Lu, F.Y. (2014) Lie Triple Derivable Mappings on Rings. Communications in Algebra, 42, 2510-2527.
https://doi.org/10.1080/00927872.2012.763041
[10]  Benkovic, D. (2015) Lie Triple Derivations of Unital Algebras with Idempotents. Linear Multilinear Algebra, 63, 141-165.
https://doi.org/10.1080/03081087.2013.851200
[11]  Ebrahimi, S. (2015) Lie Triple Derivations on Primitive Rings. Asian-European Journal of Mathematics, 8, 1550019-1-1550019-7.
https://doi.org/10.1142/S1793557115500199
[12]  Ansari, M.A., Ashraf, M. and Akhtar, M.S. (2022) Lie Triple Terivations on Trivial Extension Algebras. Bulletin of the Iranian Mathematical Society, 48, 1763-1774.
https://doi.org/10.1007/s41980-021-00618-3
[13]  Kaison, R.V. and Ringrose, J.R. (1983) Fundamentals of the Theory of Operator Algebras, Vol. I. Academic Press, New York.
[14]  Kaison, R.V. and Ringrose, J.R. (1986) Fundamentals of the Theory of Operator Algebras, Vol. II. Academic Press, New York.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133