|
-Free图上的弦泛圈性
|
Abstract:
一个非诱导圈被称为弦圈,即在图中至少有一条额外的边连接圈内两个非相邻的顶点。一个阶数为n的图G, 如果G包含长度为从4到n的弦圈,则称为弦泛圈图。1991年,R.J. Faudree, R.J. Gould和T.E. Lindquester得出结论:令G是阶数为n(n≥14)的2-连通,K1,3-free图。如果对于每一对不相邻的顶点x,y,有|N(x)∪N(y)|≥2n?23,则G是泛圈图。在本文中,我们扩展了这个结果,把泛圈性推广到弦泛圈性:对于任意2-连通,阶数为n(n≥34)的K1,3-free图G,如果每对不相邻顶点x,y∈V(G),满足|N(x)∪N(y)|≥2n?23,则图G是弦泛圈图。
A non-induced cycle is called a chorded cycle, that is, a cycle that has at least one additional edge connecting two non-consecutive vertices within the cycle. A graph G of order n is chorded pancyclic if G contains a chorded cycle of each length from 4 to n. In 1991, R.J. Faudree, R.J. Gould, and T.E. Lindquester concluded: Let G be a 2-connectedK1,3-free graph with the ordern(n≥14). If|N(x)∪N(y)|≥2n?23for each pair of nonadjacent verticesx,y, then G is pancyclic. In this paper, we extended this result by generalizing the concept of pancyclicto chorded pancyclic: ever 2-connected,K1,3-free graph G with ordern≥43is chorded pancyclic if the number of the union of for each pair of nonadjacent vertices at least2n?23.
[1] | Bondy, J.A. and Murty, U.S.R. (1976) Graph Theory with Applications. Macmillan, London. https://doi.org/10.1007/978-1-349-03521-2 |
[2] | Faudree, R.J. and Gould, R.J. (1997) Characterizing Forbidden Pairs for Hamiltonian Properties. Discrete Mathematics, 273, 45-60. https://doi.org/10.1016/S0012-365X(96)00147-1 |
[3] | Gould, R.J. and Jacobson, M.S. (1982) Forbidden Subgraphs and Hamiltonian Properties of Graphs. Discrete Mathematics, 42, 189-196. https://doi.org/10.1016/0012-365X(82)90216-3 |
[4] | Brousek, J., Ryjá?ek, Z. and Schiermeyer, I. (1999) Forbidden Subgraphs, Stability and Hamiltonicity. Discrete Mathematics, 197, 143-155. |
[5] | Faudree, R., Gould, R. and Jacobson, M. (2004) Forbidden Triples Implying Hamiltonicity: For All Graphs. Discussiones Mathematicae Graph Theory, 24, 47-54. https://doi.org/10.7151/dmgt.1212 |
[6] | Bedrossian, P.M. (1991) Forbidden Subgraph and Minimum Degree Conditions for Hamiltonicity. Ph.D. Thesis, Memphis State University, Memphis. |
[7] | Bondy, J.A. (1971) Pancyclic Graphs I. Journal of Combinatorial Theory, Series B, 11, 80-84. https://doi.org/10.1016/0095-8956(71)90016-5 |
[8] | Cream, M., Gould, R.J. and Hirohata, K. (2017) A Note on Extending Bondy’s Meta-Conjecture. The Australasian Journal of Combinatorics, 67, 463-469. |
[9] | Chen, G., Gould, R.J., Gu, X.F. and Saito, A. (2018) Cycles with a Chord in Dense Graphs. Discrete Mathematics, 342, 2131-2142. https://doi.org/10.1016/j.disc.2018.04.016 |
[10] | Tian, Z.X. (2021) Pancyclicity in Hamiltonian Graph Theory. Ph.D. Thesis, Université Paris-Saclay, Paris. |
[11] | Faudree, R.J., Gould, R.J. and Lindquester, T.E. (1991) Hamiltonian Properties and Adjacency Conditions in-Free Graphs. Graph Theory Combinatorics and Applications, 1, 467-479. |
[12] | Chvátal, V. and Erd?s, P. (1972) A Note on Hmiltonian Circuits. Discrete Mathematics, 2, 111-113. https://doi.org/10.1016/0012-365X(72)90079-9 |