全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

K 1,3 -Free图上的弦泛圈性
Chorded Pancyclicity on K 1,3 -Free Graph

DOI: 10.12677/aam.2024.135187, PP. 1994-1999

Keywords: -Free,弦圈,泛圈,弦泛圈,哈密尔顿
-Free
, Chorded Cycle, Pancyclic, Chorded Pancyclic, Hamiltonian

Full-Text   Cite this paper   Add to My Lib

Abstract:

一个非诱导圈被称为弦圈,即在图中至少有一条额外的边连接圈内两个非相邻的顶点。一个阶数为n的图G, 如果G包含长度为从4到n的弦圈,则称为弦泛圈图。1991年,R.J. Faudree, R.J. Gould和T.E. Lindquester得出结论:令G是阶数为n(n≥14)的2-连通,K1,3-free图。如果对于每一对不相邻的顶点x,y,有|N(x)∪N(y)|≥2n?23,则G是泛圈图。在本文中,我们扩展了这个结果,把泛圈性推广到弦泛圈性:对于任意2-连通,阶数为n(n≥34)的K1,3-free图G,如果每对不相邻顶点x,y∈V(G),满足|N(x)∪N(y)|≥2n?23,则图G是弦泛圈图。
A non-induced cycle is called a chorded cycle, that is, a cycle that has at least one additional edge connecting two non-consecutive vertices within the cycle. A graph G of order n is chorded pancyclic if G contains a chorded cycle of each length from 4 to n. In 1991, R.J. Faudree, R.J. Gould, and T.E. Lindquester concluded: Let G be a 2-connectedK1,3-free graph with the ordern(n≥14). If|N(x)∪N(y)|≥2n?23for each pair of nonadjacent verticesx,y, then G is pancyclic. In this paper, we extended this result by generalizing the concept of pancyclicto chorded pancyclic: ever 2-connected,K1,3-free graph G with ordern≥43is chorded pancyclic if the number of the union of for each pair of nonadjacent vertices at least2n?23.

References

[1]  Bondy, J.A. and Murty, U.S.R. (1976) Graph Theory with Applications. Macmillan, London.
https://doi.org/10.1007/978-1-349-03521-2
[2]  Faudree, R.J. and Gould, R.J. (1997) Characterizing Forbidden Pairs for Hamiltonian Properties. Discrete Mathematics, 273, 45-60.
https://doi.org/10.1016/S0012-365X(96)00147-1
[3]  Gould, R.J. and Jacobson, M.S. (1982) Forbidden Subgraphs and Hamiltonian Properties of Graphs. Discrete Mathematics, 42, 189-196.
https://doi.org/10.1016/0012-365X(82)90216-3
[4]  Brousek, J., Ryjá?ek, Z. and Schiermeyer, I. (1999) Forbidden Subgraphs, Stability and Hamiltonicity. Discrete Mathematics, 197, 143-155.
[5]  Faudree, R., Gould, R. and Jacobson, M. (2004) Forbidden Triples Implying Hamiltonicity: For All Graphs. Discussiones Mathematicae Graph Theory, 24, 47-54.
https://doi.org/10.7151/dmgt.1212
[6]  Bedrossian, P.M. (1991) Forbidden Subgraph and Minimum Degree Conditions for Hamiltonicity. Ph.D. Thesis, Memphis State University, Memphis.
[7]  Bondy, J.A. (1971) Pancyclic Graphs I. Journal of Combinatorial Theory, Series B, 11, 80-84.
https://doi.org/10.1016/0095-8956(71)90016-5
[8]  Cream, M., Gould, R.J. and Hirohata, K. (2017) A Note on Extending Bondy’s Meta-Conjecture. The Australasian Journal of Combinatorics, 67, 463-469.
[9]  Chen, G., Gould, R.J., Gu, X.F. and Saito, A. (2018) Cycles with a Chord in Dense Graphs. Discrete Mathematics, 342, 2131-2142.
https://doi.org/10.1016/j.disc.2018.04.016
[10]  Tian, Z.X. (2021) Pancyclicity in Hamiltonian Graph Theory. Ph.D. Thesis, Université Paris-Saclay, Paris.
[11]  Faudree, R.J., Gould, R.J. and Lindquester, T.E. (1991) Hamiltonian Properties and Adjacency Conditions in-Free Graphs. Graph Theory Combinatorics and Applications, 1, 467-479.
[12]  Chvátal, V. and Erd?s, P. (1972) A Note on Hmiltonian Circuits. Discrete Mathematics, 2, 111-113.
https://doi.org/10.1016/0012-365X(72)90079-9

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133