全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

干扰物特征统计规则对注意选择的影响
The Impact of Statistical Regularities of Distractor Features on Attentional Selection

DOI: 10.12677/ap.2024.144243, PP. 484-492

Keywords: 统计规则,注意选择,维度
Statistical Regularities
, Attentional Selection, Dimension

Full-Text   Cite this paper   Add to My Lib

Abstract:

视觉注意系统在视觉搜索过程中能有效地提取并利用基于特征的统计规则来分配注意资源。本研究在视觉搜索任务中,通过统一目标和干扰物定义的维度,并将目标定义为形状和颜色两种维度,考察不同维度属性的统计规则对目标选择和干扰物抑制的影响。结果发现:颜色维度下,随着时间的进行,被试在高概率条件下的反应显著快于低概率条件,产生了统计规则的影响;形状维度下,高低概率之间没有显著差异。研究结果表明:当目标和干扰物为同一维度定义时,基于干扰物颜色特征的统计规则会对注意选择产生影响,可以几乎将对独特干扰物的注意捕获抵消,而统计规则对形状维度则很难产生影响。结果说明视觉系统可以利用复杂的规律来优化认知资源的分配,且颜色维度的统计规则影响更大。
The visual attention system effectively extracts and utilizes statistical regularities based on features to efficiently allocate attentional resources during the process of visual search. In the present study we standardized the dimensions of target and distractor definitions within a visual search task, defining the target in terms of both shape and color. We concurrently investigated the impact of statistical regularities on target selection and distractor suppression, while exploring the differences in attributes across distinct dimensions. The results revealed that, in terms of color dimension, participants exhibited significantly faster response under high-probability conditions compared to low-probability conditions over time, indicating the influence of statistical regularities. Conversely, no significant difference was observed between high and low probabilities under the shape dimension. These findings suggest that when target and distractor are defined within the same dimension, statistical regularities based on color features of distractors exert an influence on attentional selection, nearly negating the attentional capture by unique distractors. However, statistical regularities exert minimal influence on the shape dimension. The results suggest that the visual system can utilize complex regularities to optimize the allocation of cognitive resources, with a greater impact of statistical regularities in the color dimension.

References

[1]  张帆, 王爱君, 张明(2021). 基于干扰物特征的统计规则对注意抑制效应的影响. 心理学报, 53(6), 555-564..
[2]  Awh, E., Belopolsky, A. V., &Theeuwes, J. (2012). Top-Down versus Bottom-up Attentional Control: A Failed Theoretical Dichotomy. Trends in Cognitive Sciences, 16, 437-443.
https://doi.org/10.1016/j.tics.2012.06.010
[3]  Broadbent, D. E. (1958). Effect of Noise on an “Intellectual” Task. The Journal of the Acoustical Society of America, 30, 824-827.
https://doi.org/10.1121/1.1909779
[4]  Clark, V. P., Parasuraman, R., Keil, K., Kulansky, R., Fannon, S., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V. (1997). Selective Attention to Face Identity and Color Studied with f MRI. Human Brain Mapping, 5, 293-297.
https://doi.org/10.1002/(SICI)1097-0193(1997)5:4<293::AID-HBM15>3.0.CO;2-F
[5]  Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1990). Attentional Modulation of Neural Processing of Shape, Color, and Velocity in Humans. Science, 248, 1556-1559.
https://doi.org/10.1126/science.2360050
[6]  Failing, M., &Theeuwes, J. (2018). Selection History: How Reward Modulates Selectivity of Visual Attention. Psychonomic Bulletin & Review, 25, 514-538.
https://doi.org/10.3758/s13423-017-1380-y
[7]  Failing, M., &Theeuwes, J. (2020). More Capture, More Suppression: Distractor Suppression Due to Statistical Regularities Is Determined by the Magnitude of Attentional Capture. Psychonomic Bulletin & Review, 27, 86-95.
https://doi.org/10.3758/s13423-019-01672-z
[8]  Failing, M., Feldmann-WusteFeld, T., Wang, B., Olivers, C., &Theeuwes, J. (2019). Statistical Regularities Induce Spatial as Well as Feature-SpeciFic Suppression. Journal of Experimental Psychology-Human Perception and Performance, 45, 1291-1303.
https://doi.org/10.1037/xhp0000660
[9]  Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2018). Altering Spatial Priority Maps via Statistical Learning of Target Selection and Distractor Filtering. Cortex, 102, 67-95.
https://doi.org/10.1016/j.cortex.2017.09.027
[10]  Gaspelin, N., & Luck, S. J. (2018). Distinguishing among Potential Mechanisms of Singleton Suppression. Journal of Experimental Psychology: Human Perception and Performance, 44, 626-644.
https://doi.org/10.1037/xhp0000484
[11]  Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct Evidence for Active Suppression of Salient-but-Irrelevant Sensory Inputs. Psychological Science, 26, 1740-1750.
https://doi.org/10.1177/0956797615597913
[12]  Han, S. W., & Kim, M. S. (2009). Do the Contents of Working Memory Capture Attention? Yes, But Cognitive Control Matters. Journal of Experimental Psychology: Human Perception & Performance, 35, 1292-1302.
https://doi.org/10.1037/a0016452
[13]  Kim, H., Ogden, A., & Anderson, B. A. (2023). Statistical Learning of Distractor Shape Modulates Attentional Capture. Vision Research, 202, Article ID: 108155.
https://doi.org/10.1016/j.visres.2022.108155
[14]  Leber, A. B., & Egeth, H. E. (2006). It’s under Control: Top-Down Search Strategies Can Override Attentional Capture. Psychonomic Bulletin & Review, 13, 132-138.
https://doi.org/10.3758/BF03193824
[15]  Lennie, P. (2003). The Cost of Cortical Computation. Current Biology, 13, 493-497.
https://doi.org/10.1016/S0960-9822(03)00135-0
[16]  Stilwell, B. T., Bahle, B., & Vecera, S. P. (2019). Feature-Based Statistical Regularities of Distractors Modulate attenTional Capture. Journal of Experimental Psychology: Human Perception and Performance, 45, 419-433.
https://doi.org/10.1037/xhp0000613
[17]  Theeuwes, J. (2010). Top-Down and Bottom-up Control of Visual Selection. Acta Psychologica, 135, 77-99.
https://doi.org/10.1016/j.actpsy.2010.02.006
[18]  Theeuwes, J. (2018). Visual Selection: Usually Fast and Automatic; Seldom Slow and Volitional. Journal of Cognition, 1, Article 29.
https://doi.org/10.5334/joc.13
[19]  Vatterott, D. B., & Vecera, S. P. (2012). Experience-Dependent Attentional Tuning of Distractor Rejection. Psychonomic Bulletin & Review, 19, 871-878.
https://doi.org/10.3758/s13423-012-0280-4
[20]  Vatterott, D. B., Mozer, M. C., & Vecera, S. P. (2018). Rejecting Salient Distractors: Generalization from Experience. Attention, Perception, & Psychophysics, 80, 485-499.
https://doi.org/10.3758/s13414-017-1465-8
[21]  Wang, B., & Theeuwes, J. (2018b). Statistical Regularities Modulate Attentional Capture. Journal of Experimental Psychology: Human Perception and Performance, 44, 13-17.
https://doi.org/10.1037/xhp0000472
[22]  Wang, B., & Theeuwes, J. (2018a). How to Inhibit a Distractor Location? Statistical Learning versus Active, Top-Down Suppression. Attention Perception & Psychophysics, 80, 860-870.
https://doi.org/10.3758/s13414-018-1493-z
[23]  Wei, L., Li, X., Huang, L., Liu, Y., Hu, L., Shen, W., Ding, Q., & Liang, P. (2023). An FMRI Study of Visual Geometric Shapes Processing. Frontiers in Neuroscience, 17, Article 1087488.
https://doi.org/10.3389/fnins.2023.1087488
[24]  Wolfe, J. M., & Horowitz, T. S. (2017). Five Factors That Guide Attention in Visual Search. Nature Human Behaviour, 1, Article No. 0058.
https://doi.org/10.1038/s41562-017-0058

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133