|
PD-1、ICOS、4-1BB与食管癌的关系
|
Abstract:
食管癌一直以来是我国最常见的肿瘤之一,而其诊断阶段是判定患者生存预后的关键。然而,大多数食管癌病例在晚期才被诊断出来,其治疗方案有限,生存率低。研究显示食管癌有许多相关的相关免疫因素,其中包括程序性死亡蛋白-1 (Programmed Death-1, PD-1)及其配体程序性蛋白死亡配体-1 (Programmed Death Ligand-1, PD-L1)呈现出显著的疾病相关性。此外,促进抗肿瘤T细胞功能的其他机制是T细胞表面表达的共刺激分子,如4-1BB、ICOS,它们可以诱导细胞因子的产生、抗凋亡分子的表达和免疫反应增强。本文探讨PD-1、ICOS、4-1BB与食管癌的联系,提供了新的思路来寻找改进食管癌的诊断和预后的生物标志物。
Esophageal cancer has always been one of the most common tumors in China, and its diagnostic stage is the key to determining the survival prognosis of patients. However, most cases of esophage-al cancer are only diagnosed in the late stage, with limited treatment options and low survival rates. Studies have shown that esophageal cancer is associated with many immune factors, including Pro-grammed Death Protein-1 (PD-1) and its ligand Programmed Death Ligand-1 (PD-L1), which exhibit significant disease associations. In addition, other mechanisms that promote anti-tumor T cell func-tion are costimulatory molecules expressed on T cell surfaces, such as 4-1BB and ICOS, which can induce cytokine production, expression of anti-apoptotic molecules, and enhanced immune re-sponse. This article explores the relationship between PD-1, ICOS, 4-1BB and esophageal cancer, providing new ideas for finding biomarkers to improve the diagnosis and prognosis of esophageal cancer.
[1] | Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660 |
[2] | Cao, W., Chen, H.D., Yu, Y.W., et al. (2021) Changing Profiles of Cancer Burden Worldwide and in China: A Secondary Analysis of the Global Cancer Statistics 2020. Chinese Medical Journal, 134, 783-791.
https://doi.org/10.1097/CM9.0000000000001474 |
[3] | Morgan, E., Soerjomataram, I., Rumgay, H., et al. (2022) The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortal-ity in 2020 and Projections to 2040: New Estimates from GLOBOCAN 2020. Gastroenterology, 163, 649-658.E2. https://doi.org/10.1053/j.gastro.2022.05.054 |
[4] | 杨欢, 孙宛怡, 王建炳, 等. 中国食管癌病因学、筛查及早期诊断研究进展[J]. 肿瘤防治研究, 2022, 49(3): 169-175. |
[5] | 王志鹏, 张海平, 宗亮, 等. 新疆地区食管癌发病风险的病例对照研究[J]. 中国肿瘤临床, 2017, 44(2): 92-95. |
[6] | Uhlenhopp, D.J., Then, E.O., Sunkara, T., et al. (2020) Epidemiology of Esophageal Cancer: Update in Global Trends, Etiology and Risk Factors. Clinical Journal of Gastroenterology, 13, 1010-1021.
https://doi.org/10.1007/s12328-020-01237-x |
[7] | Kakeji, Y., Oshikiri, T., Takiguchi, G., et al. (2021) Multimodal-ity Approaches to Control Esophageal Cancer: Development of Chemoradiotherapy, Chemotherapy, and Immunotherapy. Esophagus, 18, 25-32.
https://doi.org/10.1007/s10388-020-00782-1 |
[8] | Obermannová, R., Alsina, M., Cervantes, A., et al. (2022) Oe-sophageal Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 33, 992-1004. https://doi.org/10.1016/j.annonc.2022.07.003 |
[9] | Huang, T.X. and Fu, L. (2019) The Immune Land-scape of Esophageal Cancer. Cancer Communications, 39, Article No. 79. https://doi.org/10.1186/s40880-019-0427-z |
[10] | Lin, E.W., Karakasheva, T.A., Hicks, P.D., et al. (2016) The Tu-mor Microenvironment in Esophageal Cancer. Oncogene, 35, 5337-5349. https://doi.org/10.1038/onc.2016.34 |
[11] | Whiteside, T.L. (2008) The Tumor Microenvironment and Its Role in Promoting Tumor Growth. Oncogene, 27, 5904-5912. https://doi.org/10.1038/onc.2008.271 |
[12] | Farhood, B., Najafi, M. and Mortezaee, K. (2019) CD8+ Cytotoxic T Lymphocytes in Cancer Immunotherapy: A Review. Journal of Cellular Physiology, 234, 8509-8521. https://doi.org/10.1002/jcp.27782 |
[13] | Zhou, N. and Hofstetter, W.L. (2020) Prognostic and Therapeutic Molecular Markers in the Clinical Management of Esophageal Cancer. Expert Review of Mo-lecular Diagnostics, 20, 401-411.
https://doi.org/10.1080/14737159.2020.1731307 |
[14] | Choi, Y., Shi, Y., Haymaker, C.L., et al. (2020) T-Cell Ago-nists in Cancer Immunotherapy. Journal for ImmunoTherapy of Cancer, 8, e000966. https://doi.org/10.1136/jitc-2020-000966 |
[15] | Campana, D., Schwarz, H. and Imai, C. (2014) 4-1BB Chimeric An-tigen Receptors. The Cancer Journal, 20, 134-140.
https://doi.org/10.1097/PPO.0000000000000028 |
[16] | Jin, X., Xu, Q., Pu, C., et al. (2021) Therapeutic Efficacy of Anti-CD19 CAR-T Cells in a Mouse Model of Systemic Lupus Erythematosus. Cellular & Molecular Immunology, 18, 1896-1903. https://doi.org/10.1038/s41423-020-0472-1 |
[17] | Panneton, V., Chang, J., Witalis, M., et al. (2019) Inducible T-Cell Co-Stimulator: Signaling Mechanisms in T Follicular Helper Cells and beyond. Immunological Reviews, 291, 91-103. https://doi.org/10.1111/imr.12771 |
[18] | Solinas, C., Gu-Trantien, C. and Willard-Gallo, K. (2020) The Rationale behind Targeting the ICOS-ICOS Ligand Costimulatory Pathway in Cancer Immunotherapy. ESMO Open, 5, e000544.
https://doi.org/10.1136/esmoopen-2019-000544 |
[19] | Zou, L.Q., Yang, X., Li, Y.D. and Zhu, Z.F. (2019) Immune Checkpoint Inhibitors: A New Era for Esophageal Cancer. Expert Review of Anticancer Therapy, 19, 731-738. https://doi.org/10.1080/14737140.2019.1654379 |
[20] | Dhupar, R., Van Der Kraak, L., Pennathur, A., et al. (2017) Targeting Immune Checkpoints in Esophageal Cancer: A High Mutational Load Tumor. The Annals of Thoracic Surgery, 103, 1340-1349.
https://doi.org/10.1016/j.athoracsur.2016.12.011 |
[21] | O’Neill, R.E. and Cao, X. (2019) Co-Stimulatory and Co-Inhibitory Pathways in Cancer Immunotherapy. Advances in Cancer Research, 143, 145-194. https://doi.org/10.1016/bs.acr.2019.03.003 |
[22] | Xie, F., Xu, M., Lu, J., et al. (2019) The Role of Exosomal PD-L1 in Tumor Progression and Immunotherapy. Molecular Cancer, 18, Article No. 146. https://doi.org/10.1186/s12943-019-1074-3 |
[23] | Gubin, M.M., Zhang, X., Schuster, H., et al. (2014) Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens. Nature, 515, 577-581. https://doi.org/10.1038/nature13988 |
[24] | Guo, W., Wang, P., Li, N., et al. (2018) Prognostic Value of PD-L1 in Esophageal Squamous Cell Carcinoma: A Meta-Analysis. Oncotarget, 9, 13920-13933. https://doi.org/10.18632/oncotarget.23810 |
[25] | Okadome, K., Baba, Y., Nomoto, D., et al. (2020) Prognostic and Clinical Impact of PD-L2 and PD-L1 Expression in a Cohort of 437 Oesophageal Cancers. British Journal of Cancer, 122, 1535-1543.
https://doi.org/10.1038/s41416-020-0811-0 |
[26] | Baba, Y., Yagi, T., Kosumi, K., et al. (2019) Morphological Lymphocytic Reaction, Patient Prognosis and PD-1 Expression after Surgical Resection for Oesophageal Cancer. British Journal of Surgery, 106, 1352-1361.
https://doi.org/10.1002/bjs.11301 |
[27] | Amatore, F., Gorvel, L. and Olive, D. (2020) Role of Inducible Co-Stimulator (ICOS) in Cancer Immunotherapy. Expert Opinion on Biological Therapy, 20, 141-150. https://doi.org/10.1080/14712598.2020.1693540 |
[28] | Edwards, J., Tasker, A., Pires Da Silva, I., et al. (2019) Prevalence and Cellular Distribution of Novel Immune Checkpoint Targets across Longitudinal Specimens in Treat-ment-Na?ve Melanoma Patients: Implications for Clinical Trials. Clinical Cancer Research, 25, 3247-3258. https://doi.org/10.1158/1078-0432.CCR-18-4011 |
[29] | Nagase, H., Takeoka, T., Urakawa, S., et al. (2017) ICOS+ Foxp3+ TILs in Gastric Cancer Are Prognostic Markers and Effector Regulatory T Cells Associated with Helicobacter Pylori. International Journal of Cancer, 140, 686-695.
https://doi.org/10.1002/ijc.30475 |
[30] | Zappasodi, R., Sirard, C., Li, Y., et al. (2019) Rational Design of An-ti-GITR-Based Combination Immunotherapy. Nature Medicine, 25, 759-766. https://doi.org/10.1038/s41591-019-0420-8 |
[31] | Hong, M.H., Shin, S.J., Shin, S.K., et al. (2019) High CD3 and ICOS and Low TIM-3 Expression Predict Favourable Survival in Resected Oesophageal Squamous Cell Carcinoma. Scientific Reports, 9, Article No. 20197.
https://doi.org/10.1038/s41598-019-56828-7 |
[32] | Chester, C., Sanmamed, M.F., Wang, J., et al. (2018) Immuno-therapy Targeting 4-1BB: Mechanistic Rationale, Clinical Results, and Future Strategies. Blood, 131, 49-57. https://doi.org/10.1182/blood-2017-06-741041 |
[33] | Wilcox, R, A., Tamada, K., Flies, D, B., et al. (2004) Ligation of CD137 Receptor Prevents and Reverses Established Anergy of CD8+ Cytolytic T Lymphocytes in Vivo. Blood, 103, 177-184. https://doi.org/10.1182/blood-2003-06-2184 |
[34] | Menk, A.V., Scharping, N.E., Rivadeneira, D.B., et al. (2018) 4-1BB Costimulation Induces T Cell Mitochondrial Function and Biogenesis Enabling Cancer Immunotherapeutic Responses. Journal of Experimental Medicine, 215, 1091-1100. https://doi.org/10.1084/jem.20171068 |
[35] | Williams, J.B., Horton, B.L., Zheng, Y., et al. (2017) The EGR2 Tar-gets LAG-3 and 4-1BB Describe and Regulate Dysfunctional Antigen-Specific CD8+ T Cells in the Tumor Microenvi-ronment. The Journal of Experimental Medicine, 214, 381-400. https://doi.org/10.1084/jem.20160485 |
[36] | Newcomb, E.W., et al. (2010) Radiotherapy Enhances Antitumor Effect of Anti-CD137 Therapy in a Mouse Glioma Model. Radiation Research, 173, 426-432. |