全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

营养不良诱发的以反复晕厥肌无力为表现的糖尿病多发神经病变1例并文献复习
A Case of Diabetic Multiple Neuropathy Induced by Malnutrition Manifested by Recurrent Syncope Muscle Weakness and Literature Review

DOI: 10.12677/ACM.2024.143748, PP. 624-631

Keywords: 糖尿病神经病,变直立性低血压,营养不良,低碳水饮食
Diabetic Neuropathy
, Orthostatic Hypotension, Malnutrition, Low-Carbon Diet

Full-Text   Cite this paper   Add to My Lib

Abstract:

糖尿病神经病变(Diabetic Neuropathy)是糖尿病最常见的慢性并发症,常见周围神经及自主神经受累,其中自主神经病变因其临床表现的隐匿和多样化而容易被忽略。糖尿病心血管自主神经病变是糖尿病神经病变中最严重的一种,被认为是糖尿病心血管疾病相关死亡的强独立预测因子,但因其临床表现的多样性及隐匿性常常不易引起重视,且缺乏满意的临床治疗效果,从而显著增加了糖尿病患者死亡率。对于糖尿病自主神经病变的诱发因素及治疗管理策略目前没有统一的定论,本文通过介绍分析1例以反复体位性晕厥、肌无力为表现的糖尿病多发神经病变患者的诊疗过程,结合其饮食结构、营养状况及研究进展对该类疾病发病机制、危险因素及治疗管理进行探讨,旨在提高临床医师对特殊临床表现类型的糖尿病神经病变及其危险因素的认识和临床治疗管理能力。
Diabetic neuropathy is the most common chronic complication of diabetes, involving peripheral nerves and autonomic nerves, among which autonomic neuropathy is easily ignored due to its in-sidious and diverse clinical manifestations. Diabetic cardiovascular autonomic neuropathy is the most serious type of diabetic neuropathy and is considered to be a strong independent predictor of diabetic cardiovascular disease-related mortality, but it is often not easy to pay attention to due to the diversity and insidiousness of its clinical manifestations, and lacks satisfactory clinical treat-ment effects, which significantly increases the mortality rate of diabetic patients. This article intro-duces and analyzes the diagnosis and treatment process of a patient with diabetic polyneuropathy manifested by recurrent orthostatic syncope and muscle weakness, and discusses the pathogenesis, risk factors and treatment management of this type of disease based on his dietary structure, nutri-tional status and research progress, aiming to improve clinicians’ understanding of special clinical manifestations of diabetic neuropathy and its risk factors, as well as the clinical treatment and management ability.

References

[1]  Lovic, D., Piperidou, A., Zografou, I., et al. (2020) The Growing Epidemic of Diabetes Mellitus. Current Vascular Pharmacology, 18, 104-109.
https://doi.org/10.2174/1570161117666190405165911
[2]  Pop-Busui, R., Lu, J., Brooks, M.M., et al. (2013) Impact of Glycemic Control Strategies on the Progression of Diabetic Peripheral Neuropathy in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) Cohort. Diabetes Care, 36, 3208-3215.
https://doi.org/10.2337/dc13-0012
[3]  Tesfaye, S., Chaturvedi, N., Eaton, S.E., et al. (2005) Vascular Risk Fac-tors and Diabetic Neuropathy. The New England Journal of Medicine, 352, 341-350.
https://doi.org/10.1056/NEJMoa032782
[4]  Spallone, V., Ziegler, D., Freeman, R., et al. (2011) Cardiovascular Autonomic Neuropathy in Diabetes: Clinical Impact, Assessment, Diagnosis, and Management. Diabetes/Metabolism Research and Reviews, 27, 639-653.
https://doi.org/10.1002/dmrr.1239
[5]  Pan, Q., Li, Q., Deng, W., et al. (2019) Prevalence and Diagnosis of Dia-betic Cardiovascular Autonomic Neuropathy in Beijing, China: A Retrospective Multicenter Clinical Study. Frontiers in Neuroscience, 13, Article 1144.
https://doi.org/10.3389/fnins.2019.01144
[6]  Ewing, D.J., Martyn, C.N., Young, R.J., et al. (1985) The Value of Cardiovascular Autonomic Function Tests: 10 Years Experience in Diabetes. Diabetes Care, 8, 491-498.
https://doi.org/10.2337/diacare.8.5.491
[7]  Bradbury, S. and Eggleston, C. (1925) Postural Hypotension: A Re-port of Three Cases. American Heart Journal, 1, 73-86.
https://doi.org/10.1016/S0002-8703(25)90007-5
[8]  Mol, A., Bui Hoang, P.T.S., Sharmin, S., et al. (2019) Orthostatic Hypotension and Falls in Older Adults: A Systematic Re-view and Meta-Analysis. Journal of the American Medical Directors Association, 20, 589-597.E5.
https://doi.org/10.1016/j.jamda.2018.11.003
[9]  Ricci, F., Fedorowski, A., Radico, F., et al. (2015) Cardiovascu-lar Morbidity and Mortality Related to Orthostatic Hypotension: A Meta-Analysis of Prospective Observational Studies. European Heart Journal, 36, 1609-1617.
https://doi.org/10.1093/eurheartj/ehv093
[10]  Jacob, G., Ertl, A.C., Shannon, J.R., et al. (1998) Effect of Standing on Neurohumoral Responses and Plasma Volume in Healthy Subjects. Journal of Applied Physiology, 84, 914-921.
https://doi.org/10.1152/jappl.1998.84.3.914
[11]  Mohammedi, K., Woodward, M., Marre, M., et al. (2017) Com-parative Effects of Microvascular and Macrovascular Disease on the Risk of Major Outcomes in Patients with Type 2 Diabetes. Cardiovascular Diabetology, 16, Article No. 95.
https://doi.org/10.1186/s12933-017-0574-y
[12]  Vuong, T.A., Leem, Y.E., Kim, B.G., et al. (2017) A Sonic Hedgehog Coreceptor, BOC Regulates Neuronal Differentiation and Neurite Outgrowth via Interaction with ABL and JNK Activation. Cellular Signalling, 30, 30-40.
https://doi.org/10.1016/j.cellsig.2016.11.013
[13]  Hosseinirad, H., Shahrestanaki, J.K., Moosazadeh Moghaddam, M., et al. (2021) Protective Effect of Vitamin D3 against Pb-Induced Neurotoxicity by Regulating the Nrf2 and NF-κB Pathways. Neurotoxicity Research, 39, 687-696.
https://doi.org/10.1007/s12640-020-00322-w
[14]  Alam, U., Petropoulos, I.N., Ponirakis, G., et al. (2021) Vitamin D Deficiency Is Associated with Painful Diabetic Neuropathy. Diabetes/Metabolism Research and Reviews, 37, e3361.
https://doi.org/10.1002/dmrr.3361
[15]  Basit, A., Basit, K.A., Fawwad, A., et al. (2016) Vitamin D for the Treat-ment of Painful Diabetic Neuropathy. BMJ Open Diabetes Research & Care, 4, e000148.
https://doi.org/10.1136/bmjdrc-2015-000148
[16]  Stevenson, J.L., Clevenger, H.C. and Cooper, J.A. (2015) Hun-ger and Satiety Responses to High-Fat Meals of Varying Fatty Acid Composition in Women with Obesity. Obesity, 23, 1980-1986.
https://doi.org/10.1002/oby.21202
[17]  Finn, P.F. and Dice, J.F. (2006) Proteolytic and Lipolytic Re-sponses to Starvation. Nutrition, 22, 830-844.
https://doi.org/10.1016/j.nut.2006.04.008
[18]  Wells, A.S. and Read, N.W. (1996) Influences of Fat, Energy, and Time of Day on Mood and Performance. Physiology & Behavior, 59, 1069-1076.
https://doi.org/10.1016/0031-9384(95)02253-8
[19]  Yancy Jr., W.S., Olsen, M.K., Guyton, J.R., et al. (2004) A Low-Carbohydrate, Ketogenic Diet versus a Low-Fat Diet to Treat Obesity and Hyperlipidemia: A Randomized, Con-trolled Trial. Annals of Internal Medicine, 140, 769-777.
https://doi.org/10.7326/0003-4819-140-10-200405180-00006
[20]  Lopaschuk, G.D., Ussher, J.R., Folmes, C.D., et al. (2010) Myocardial Fatty Acid Metabolism in Health and Disease. Physiological Reviews, 90, 207-258.
https://doi.org/10.1152/physrev.00015.2009
[21]  Horton, J.L., Martin, O.J., Lai, L., et al. (2016) Mitochondrial Protein Hyperacetylation in the Failing Heart. JCI Insight, 2, e84897.
https://doi.org/10.1172/jci.insight.84897
[22]  Best, T.H., Franz, D.N., Gilbert, D.L., et al. (2000) Cardiac Compli-cations in Pediatric Patients on the Ketogenic Diet. Neurology, 54, 2328-2330.
https://doi.org/10.1212/WNL.54.12.2328
[23]  Johnston, C.S., Tjonn, S.L., Swan, P.D., et al. (2006) Ketogenic Low-Carbohydrate Diets Have No Metabolic Advantage over Nonketogenic Low-Carbohydrate Diets. The American Journal of Clinical Nutrition, 83, 1055-1061.
https://doi.org/10.1093/ajcn/83.5.1055
[24]  中华医学会糖尿病学分会神经并发症学组. 糖尿病神经病变诊治专家共识(2021年版) [J]. 中华内分泌代谢杂志, 2021, 37(6): 499-515.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133