全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

聚类分析与判别分析在智慧旅游中的应用与探索
The Application and Exploration of Cluster Analysis and Discriminant Analysis in the Smart Tourism

DOI: 10.12677/ORF.2024.141095, PP. 1021-1032

Keywords: 智慧旅游,Tableau数据可视化,聚类分析,判别分析
Smart Tourism
, Tableau Data Visualization, Cluster Analysis, Discriminant Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,我国旅游业一直保持着高速稳定的发展趋势。在近两年疫情的影响下,旅游业发展受到影响,但我国旅游业目前仍处于持续发展增长的时期。并且,随着信息技术的持续发展,大数据时代已经悄然来临,社会各产业与大数据技术进行了深度的融合,智慧旅游应运而生。由于全国各地区之间差异等各种因素的影响,各个地区的旅游业发展水平呈现出不一致性。本文从Tableau可视化以及智慧旅游概念出发,利用Tableau作图工具对全国近十年的旅游发展趋势进行分析。由于影响智慧旅游发展水平的指标有很多,本文选取2019年全国各省份的具有代表性的若干指标进行研究,即选取旅游总收入、总人次、旅游类居民消费价格指数等9个指标。对于各省份智慧旅游的发展,利用聚类分析和判别分析模型对全国各省份的智慧旅游发展现状进行分析。最后,利用多元统计分析软件SPSS得到分析的结果,将各省份归为不同的类别,寻找原因并给出相应的对策。经研究可得,将全国各省份归为5类。结合各地区智慧旅游的发展现状,给出相应的建议和对策。对于北京、上海发展较成熟的地区,应更加注重高级智能化的旅游产品;对于贵州,由于地区、环境等的原因导致现阶段该区域的智慧旅游相对落后,政府的相关策略应向该地区偏斜。
In recent years, China’s tourism industry has maintained a high-speed and stable development trend. Under the influence of the epidemic in the past two years, the development of tourism has been affected, but China’s tourism industry is still in a period of development and growth. In ad-dition, with the continuous development of information technology, the era of big data has qui-etly come, and various social industries and big data technology have been deeply integrated, then smart tourism has emerged at the historic moment. Due to the influence of various factors such as differences among different regions in the country, the level of tourism development in different regions is inconsistent. Starting with the Tableau visualization and the concept of smart tourism, this paper uses the Tableau mapping tool to analyze the development trend of national tourism in the past decade. As there are many indicators affecting the development level of smart tourism, this paper selects several representative indicators of various provinces in 2019, that is, nine indicators such as total tourism revenue, total person-time and tourism consumer price index, etc. For the development of smart tourism in each province, the cluster analysis and discriminant analysis model are used to analyze the development status of smart tourism in each province. Finally, the analyzed results are obtained by using the software SPSS to perform multivariate statistical analysis, classifying the provinces into different categories, finding the reasons and giving corresponding countermeasures. After the study, the provinces in the coun-try were classified into five categories. Combined with the development status of smart tourism in each region, the corresponding suggestions and countermeasures are given. For Beijing and Shanghai, more attention should be paid to advanced and intelligent tourism products; For Guizhou, the smart tourism in this region is relatively backward at present due to regional and environmental reasons, and the government’s relevant strategy should be

References

[1]  卢慧敏. 数据分析在智慧旅游中的应用研究[J]. 劳动保障世界, 2017(29): 63-69.
[2]  王强进. 基于大数据分析的智慧旅游研究[D]: [硕士学位论文]. 长春: 长春工业大学, 2021.
[3]  Li, Y.P., Hu, C., Huang, C. and Duan, L.Q. (2016) The Concept of Smart Tourism in the Context of Tourism Information Services. Tourism Management, 58, 293-300.
https://doi.org/10.1016/j.tourman.2016.03.014
[4]  Koo, C., Park, J. and Lee, J.-N. (2017) Smart Tourism: Traveler, Business, and Organizational Perspectives. Information & Management, 54, 683-686.
https://doi.org/10.1016/j.im.2017.04.005
[5]  陈建敏, 徐苏丽. 基于人工智能的智慧旅游大数据分析模型的构建[J]. 电脑知识与技术, 2019, 15(11): 189-190.
[6]  陈胜花. 基于大数据时代的智慧旅游开发策略探究[J]. 旅游纵览(下半月), 2020(2): 18-19.
[7]  郭珂. 智慧旅游中大数据的应用研究[J]. 旅游纵览(下半月), 2018(12): 15-16.
[8]  吴星星. 我国智慧旅游研究热点可视化分析——基于CNKI核心期刊载文数据[J]. 湖北文理学院学报, 2021, 42(2): 35-40.
[9]  张赞. 基于大数据的智慧旅游系统设计与实现[D]: [硕士学位论文]. 沈阳: 东北大学, 2016.
[10]  刘全才, 牛牧原, 刘秋雨, 梁瀚余, 张思纪. 数据分析与可视化在智慧旅游中的探索与应用[J]. 产业科技创新, 2020, 2(17): 44-45.
[11]  杨静. 关于大数据在智慧旅游管理中的应用[J]. 旅游纵览(下半月), 2019(22): 52-53.
[12]  陈龙. 基于判别分析的家庭外出旅游动机影响因素探究[J]. 攀枝花学院学报, 2014, 31(3): 105-107.
[13]  祝新亚, 李许坚. 基于聚类分析和判别分析的我国主要省市综合实力状况评价[J]. 北方经济, 2011(8): 16-18.
[14]  丁柳, 刘艳华. 我国各地区经济发展水平的实证分析——基于聚类分析及判别分析法的应用[J]. 赤峰学院学报(自然科学版), 2017, 33(15): 143-145.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133