全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Penalized Spline Estimation for Nonparametric Multiplicative Regression Models

DOI: 10.4236/oalib.1111352, PP. 1-16

Keywords: Multiplicative regression, Nonparametric estimation, Penalized splines, Relative error,Smoothing parameter selection

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we consider the estimation problem of the unknown link function in the nonparametric multiplicative regression model. Combining the penalized splines technique, a least product relative error estimation method is proposed, where a effective model degree of freedom is defined, then the smoothing parameter is chosen by some information criterions. Simulation studies show that these strategies work well. Some asymptotic properties are established. A real data set is analyzed to illustrate the usefulness of the proposed approach. Finally, some possible extensions are discussed.

References

[1]  Chen, K., Guo, S., Lin, Y. and Ying, Z. (2010) Least Absolute Relative Error Estimation. Journal of the American Statistical Association, 105, 1104-1112. https://doi.org/10.1198/jasa.2010.tm09307
[2]  Khoshgoftaar, T.M., Bhattacharyya, B.B. and Richardson, G.D. (1992) Predicting Software Errors, during Development, Using Nonlinear Regression Models: A Comparative Study. IEEE Transactions on Reliability, 41, 390-395. https://doi.org/10.1109/24.159804
[3]  Narula, S.C. and Wellington, J.F. (1977) Prediction, Linear Regression and the Minimum Sum of Relative Errors. Technometrics, 19, 185-190. https://doi.org/10.1080/00401706.1977.10489526
[4]  Park, H. and Stefanski, L.A. (1998) Relative-Error Prediction. Statistics and Probability Letters, 40, 227-236. https://doi.org/10.1016/S0167-7152(98)00088-1
[5]  Chen, K., Lin, Y., Wang, Z. and Ying, Z. (2016) Least Product Relative Error Estimation. Journal of Multivariate Analysis, 144, 91-98. https://doi.org/10.1016/j.jmva.2015.10.017
[6]  Zhang, Q. and Wang, Q. (2013) Local Least Absolute Relative Error Estimating Approach for Partially Linear Multiplicative Model. Statistica Sinica, 23, 1091-1116. https://doi.org/10.5705/ss.2012.133
[7]  Hirose, K. and Masuda, H. (2018) Robust Relative Error Estimation. Entropy, 20, Article 632. https://doi.org/10.3390/e20090632
[8]  Zhang, J., Feng, Z. and Peng, H. (2018) Estimation and Hypothesis Test for Partial Linear Multiplicative Models. Computational Statistics & Data Analysis, 128, 87-103. https://doi.org/10.1016/j.csda.2018.06.017
[9]  Chen, Y. and Liu, H. (2021) A New Relative Error Estimation for Partially Linear Multiplicative Model. Communications in Statistics-Simulation and Computation, 52, 4962-4980.
[10]  Liu, H. and Xia, X. (2018) Estimation and Empirical Likelihood for Single-Index Multiplicative Models. Journal of Statistical Planning and Inference, 193, 70-88. https://doi.org/10.1016/j.jspi.2017.08.003
[11]  Zhang, J., Zhu, J. and Feng, Z. (2019) Estimation and Hypothesis Test for Single-Index Multiplicative Models. Test, 28, 242-268. https://doi.org/10.1007/s11749-018-0586-2
[12]  Zhang, J., Cui, X. and Peng, H. (2020) Estimation and Hypothesis Test for Partial Linear Single-Index Multiplicative Models. Annals of the Institute of Statistical Mathematics, 72, 699-740. https://doi.org/10.1007/s10463-019-00706-6
[13]  Hu, D.H. (2019) Local Least Product Relative Error Estimation for Varying Coefficient Multiplicative Regression Model. Acta Mathematicae Applicatae Sinica, English Series, 35, 274-286. https://doi.org/10.1007/s10255-018-0794-2
[14]  Chen, Y., Liu, H. and Ma, J. (2022) Local Least Product Relative Error Estimation for Single-Index Varying-Coefficient Multiplicative Model with Positive Responses. Journal of Computational and Applied Mathematics, 415, Article ID: 114478. https://doi.org/10.1016/j.cam.2022.114478
[15]  Ming, H., Liu, H. and Yang, H. (2022) Least Product Relative Error Estimation for Identification in Multiplicative Additive Models. Journal of Computational and Applied Mathematics, 404, Article ID: 113886. https://doi.org/10.1016/j.cam.2021.113886
[16]  Kalogridis, I. and Van Aelst, S. (2021) M-Type Penalized Splines with Auxiliary Scale Estimation. Journal of Statistical Planning and Inference, 212, 97-113. https://doi.org/10.1016/j.jspi.2020.09.004
[17]  Kalogridis, I. and Van Aelst, S. (2021) Robust Penalized Spline Estimation with Difference Penalties. Econometrics and Statistics, 29, 169-188.
[18]  Ruppert, D., Wand, M.P. and Carroll, R.J. (2003) Semiparametric Regression. Cambridge University Press, New York. https://doi.org/10.1017/CBO9780511755453
[19]  Schumaker, L. (2007) Spline Functions: Basic Theory. Cambridge University Press, New York. https://doi.org/10.1017/CBO9780511618994
[20]  Wu, C. and Yu, Y. (2014) Partially Linear Modeling of Conditional Quantiles Using Penalized Splines. Computational Statistics & Data Analysis, 77, 170-187. https://doi.org/10.1016/j.csda.2014.02.020

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133