At the cellular level, reduced kidney perfusion in atherosclerotic renal arthery disease (ARVD), induces hypoxia, activation of the renin-angiotensin-aldosterone system (RAAS) and cytokine activation. Impaired blood flow in the kidneys creates a microenvironment triggering significant cytokine production, contributing to vascular damage and endothelial disfunction. Interactions between cytokines and endothelial, glomerular, and tubular cells often result in increased vessel permeability, and fibrosis, and contribute to the development of chronic kidney disease (CKD). Molecules such as endothelins, prostaglandins, and nitric oxide play a crucial role at the molecular level. The imbalance between vasoconstrictor and vasodilator factors contributes to vascular dysfunction. Oxidative stress and inflammatory processes at the cellular level contribute to endothelial damage and structural changes in blood vessels. Mineralocorticoid receptor antagonists (MRAs) therapy in the context of ARVD holds promise in reducing fibrosis, promoting angiogenesis and enhancing overall outcomes in patients with this pathology. Recent data also indicates the antioxidative, anti-inflammatory, and antifibrotic effects of SGLT2 inhibitors. They reduce oxidative stress caused by hypoxic conditions and enhance renal perfusion, contributing to the preservation of cellular function. Studies employing Blood Oxygen Level-Dependent (BOLD) imaging have identified adaptations to reduced blood flow, volume, and glomerular filtration rate in post-stenotic kidneys that preserve oxygenation in the medulla and cortex during medical therapy. Data from the literature indicate that despite the partial recovery of renal hypoxia and restoration of blood flow after revascularization, inflammatory cytokines and injury biomarkers remain elevated, and the glomerular filtration rate (GFR) does not recover in ARVD. Restoration of vascular patency alone has failed to reverse tubulointerstitial damage and partially explains the limited clinical benefit of renal stenting. Considering these findings, BOLD MR imaging emerges as a technique capable of providing insights into the critical juncture of irreversibility in ARVD. However, further research is needed to monitor renal hypoxia following renal artery stenting and the inflammatory response over an extended period in conjunction with optimal therapy involving MRAs and SGLT2 agonists. The aim of research at the molecular level enables the identification of potential therapeutic modalities targeting specific molecular pathways, opening the door to innovative
Raman, G., Adam, G.P., Halladay, C.W., Balk, E.M., et al. (2016) Comparative Effectiveness of Management Strategies for Renal Artery Stenosis: An Updated Systematic Review. Annals of Internal Medicine, 165, 635-649. https://doi.org/10.7326/M16-1053
[4]
Textor, S.C. and Herrmann, S.M. (2017) Evidence and Renovascular Disease: Trials and Mistrials? American Journal of Kidney Diseases, 70, 160-163. https://doi.org/10.1053/j.ajkd.2017.04.013
[5]
Nishiyama, A. and Kitada, K. (2023) Possible Renoprotective Mehanisms of SGLT2 Inhibitors. Frontiers in Medicine, 10, Article 1115413. https://doi.org/10.3389/fmed.2023.1115413
[6]
Selvaraj, S., Vaduganathan, M., Claggett, B.L., et al. (2023) Blood Pressure and Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction: DELIVER. JACC: Heart Failure, 11, 76-89. https://doi.org/10.1016/j.jchf.2022.09.002
[7]
Zhang, Y.Y., Yu, Y. and Yu, C. (2019) Antifibrotic Roles of RAAS Blockers: Update. In: Liu, B.C., Lan, H.Y. and Lv, L.L., Eds., Renal Fibrosis: Mechanisms and Therapies, Springer, Singapore, 671-691. https://doi.org/10.1007/978-981-13-8871-2_33
[8]
Baradhi, K.M. and Bream, P. (2023) Fibromuscular Dysplasia. Stat Pearls, Tressure Island.
[9]
Serafidis, P.A., Theodorakopoulo, M., Oritz, A., Cozzolino, M., et al. (2023) Atherosclerotic Renovascular Disease: A Clinical Practice Document by the European Renal Best Practice (ERBP) Board of the European Renal Association (ERA) and the Working Group Hypertension and the Kidney of the European Society of Hypertension (ESH). Nephrology Dialysis Transplantation, 38, 2835-2850. https://doi.org/10.1093/ndt/gfad095
[10]
Safian, R.D. and Madder, R.D. (2009) Refining the Approach to Renal Artery Revascularization. JACC: Cardiovascular Interventions, 2, 161-174. https://doi.org/10.1016/j.jcin.2008.10.014
[11]
Hicks, C.W., Clark, T.W.I., Cooper, C.J., Kalra, P.A., et al. (2022) Atherosclerotic Renovascular Disease: A KDIGO (Kidney Disease: Improving Global Outcomes) Controversies Conference. American Journal of Kidney Diseases, 79, 289-301. https://doi.org/10.1053/j.ajkd.2021.06.025
[12]
Textor, S.C. and Lerman, L.O. (2015) Paradigm Shifts in Atherosclerotic Renovascular Disease: Where Are We Now? Journal of the American Society of Nephrology, 26, 2074-2080. https://doi.org/10.1681/ASN.2014121274
[13]
Higashi, Y., Maruhashi, T., Noma, K. and Kihara, Y. (2014) Oxidative Stress and Endothelial Dysfunction: Clinical Evidence and Therapeutic Implications. Trends in Cardiovascular Medicine, 24, 165-169. https://doi.org/10.1016/j.tcm.2013.12.001
[14]
Shaito, A., Aramouni, K., Assaf, R., Parenti, A., et al. (2022) Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases. Frontiers in Bioscience, 27, Article 105. https://doi.org/10.31083/j.fbl2703105
[15]
Lerman, A. and Zeiher, A.M. (2005) Endothelial Function: Cardiac Events. Circulation, 111, 363-368. https://doi.org/10.1161/01.CIR.0000153339.27064.14
[16]
Schodel, J. and Ratcliffe, P.J. (2019) Mechanisms of Hypoxia Signalling: New Implications for Nephrology. Nature Reviews Nephrology, 15, 641-659. https://doi.org/10.1038/s41581-019-0182-z
[17]
Thulborn, K.R., Waterton, J.C., Matthews, P.M. and Radda, G.K. (1982) Oxygenation Dependence of the Transverse Relaxation Time of Water Protons in Whole Blood at High Field. Biochimica et Biophysica Acta (BBA)—General Subjects, 714, 265-270. https://doi.org/10.1016/0304-4165(82)90333-6
[18]
Nangaku, M. and Eckardt, K.U. (2007) Hypoxia and the HIF System in Kidney Disease. Journal of Molecular Medicine, 85, 1325-1330. https://doi.org/10.1007/s00109-007-0278-y
[19]
Nangaku, M. and Eckardt, K.U. (2006) Pathogenesis of Renal Anemia. Seminars in Nephrology, 26, 261-268. https://doi.org/10.1016/j.semnephrol.2006.06.001
[20]
Shu, S., Wang, Y., Zheng, M., Liu, Z., Cai, J., Tang, C. and Dong, Z. (2019) Hypoxia and Hypoxia-Inducible Factors in Kidney Injury and Repair. Cells, 8, Article 207. https://doi.org/10.3390/cells8030207
[21]
Zhang, C., Dong, H., Chen, F.W., Wang, G.F., et al. (2019) The HMGB1-RAGE/TLR-TNF-α Signaling Pathway May Contribute to Kidney Injury Induced by Hypoxia. Experimental and Therapeutic Medicine, 17, 17-26. https://doi.org/10.3892/etm.2018.6932
[22]
Hori, O., Brett, J., Slattery, T., Cao, R., Nitecki, D., et al. (1995) The Receptor for Advanced Glycation End Products (RAGE) Is a Cellular Binding Site for Amphoterin: Mediation of Neurite Outgrowth and Co-Expression of Rage and Amphoterin in the Developing Nervous System. Journal of Biological Chemistry, 270, 25752-25761. https://doi.org/10.1074/jbc.270.43.25752
[23]
Su, C.T., See, D.H.W., Huang, Y.J., Hung, K.Y., et al. (2023) LTBP4 Protects against Renal Fibrosis via Mitochondrial and Vascular Impacts. Circulation Research, 133, 71-85. https://doi.org/10.1161/CIRCRESAHA.123.322494
[24]
Su, C.T., Jao, T.M., Urban, Z., Huang, J.W., et al. (2012) TBP4 Affects Renal Fibrosis by Influencing Angiogenesis and Altering Mitochondrial Structure. Cell Death & Disease, 12, Article 943.
[25]
Peng, D.D., Fu, M.Y., Wang, M.N., et al. (2022) Targeting TGF-β Signal Transduction for Fibrosis and Cancer Therapy. Molecular Cancer, 21, Article No. 104. https://doi.org/10.1186/s12943-022-01569-x
[26]
Wahl, S.M. and Chen, W.J. (2005) Transforming Growth Factor-β-Induced Regulatory T Cells Referee Inflammatory and Autoimmune Diseases. Arthritis Research & Therapy, 7, Article No. 62. https://doi.org/10.1186/ar1504
[27]
Okuda, S., Languino, L.R., Ruoslahti, E. and Border, W.A. (1990) Elevated Expression of Transforming Growth Factor-β and Proteoglycan Production in Experimental Glomerulonephritis. Possible Role in Expansion of the Mesangial Extracellular Matrix. Journal of Clinical Investigation, 86, 453-462. https://doi.org/10.1172/JCI114731
[28]
Reinhold, S.W., Ulhlein, D.C., Boger, C.A., Kramer, B.K., et al. (2009) Renin, Endothelial No Synthase and Endothelin Gene Expression in the 2Kidney-1Clip Goldblatt Model of Long-Term Renovascular Hypertension. European Journal of Medical Research, 14, Article No. 520. https://doi.org/10.1186/2047-783X-14-12-520
[29]
Sigmon, D.H. and Beierwaltes, W.H. (1998) Influence of Nitric Oxide in the Chronic Phase of Two-Kidney, One Clip Renovascular Hypertension. Hypertension, 31, 649-656. https://doi.org/10.1161/01.HYP.31.2.649
[30]
Turkstra, E., Boer, P., Braam, B. and Koomans, H.A. (1999) Increased Availability of Nitric Oxide Leads to Enhanced Nitric Oxide Dependency of Tubuloglomerular Feedback in the Contralateral Kidney of Rats with 2-Kidney, 1-Clip Goldblatt Hypertension. Hypertension, 34, 679-684. https://doi.org/10.1161/01.HYP.34.4.679
[31]
Pereira, B.P., do Vale, G.T. and Ceron, C.S. (2022) The Role of Nitric Oxide in Renovascular Hypertension: From the Pathophysiology to the Treatment. Naunyn-Schmiedeberg’s Archives of Pharmacology, 395, 121-131. https://doi.org/10.1007/s00210-021-02186-z
[32]
Evans, J.J., Youssef, A.H., Yandle, T.G., Lewis, L.K. and Nicholls, M.G. (2023) Endothelin-1 Directly Modulates Its Own Secretion: Studies Utilising the Cell Immunoblot Technique. Regulatory Peptides, 113, 149-153. https://doi.org/10.1016/S0167-0115(03)00045-4
[33]
Zollmann, F.S. and Paul, M. (2000) Transgenic Models for the Study of Endothelin Function in the Cardiovascular System. Journal of Cardiovascular Pharmacology, 35, S13-S16. https://doi.org/10.1097/00005344-200000002-00004
[34]
Gupta, A. and Sharma, A.C. (2004) Despite Minimal Hemodynamic Alterations Endotoxemia Modulates NOS and p38-MAPK Phosphorylation via Metallopeptidases. Molecular and Cellular Biochemistry, 265, 47-56. https://doi.org/10.1023/B:MCBI.0000044314.29395.fb
[35]
Gray, M.O., Long, C.S., Kalinyak, J.E., Li, H.T. and Karliner, J.S. (1998) Angiotensin II Stimulates Cardiac Myocyte Hypertrophy via Paracrine Release of TGF-β 1 and Endothelin-1 from Fibroblasts. Cardiovascular Research, 40, 352-363. https://doi.org/10.1016/S0008-6363(98)00121-7
[36]
Morishita, R., Higaki, J., Nagano, M., Mikami, H., Ogihara, T., Tanaka, T., Ishii, K., Okunishi, H. and Miyazaki, M. (1991) Consistent Activation of Prorenin mRNA in Renal Hypertensive Rats. Canadian Journal of Physiology and Pharmacology, 69, 1364-1366. https://doi.org/10.1139/y91-202
[37]
Morton, J.J. and Wallace, E.C. (1983) The Importance of the Renin-Angiotensin System in the Development and Maintenance of Hypertension in the Two-Kidney One-Clip Hypertensive Rat. Clinical Science, 64, 359-370. https://doi.org/10.1042/cs0640359
[38]
Sawamura, T. and Nakada, T. (1996) Role of Dopamine in the Striatum, Renin-Angiotensin System and Renal Sympathetic Nerve on the Development of Two-Kidney, One-Clip Goldblatt Hypertension. Journal of Urology, 155, 1108-1111. https://doi.org/10.1016/S0022-5347(01)66401-2
[39]
Mai, M., Hilgers, K.F., Wagner, J., Mann, J.F. and Geiger, H. (1995) Expression of Angiotensin-Converting Enzyme in Renovascular Hypertensive Rat Kidney. Hypertension, 25, 674-678. https://doi.org/10.1161/01.HYP.25.4.674
[40]
Ritthaler, T., Gopfert, T., Firth, J.D., Kurtz, A., et al. (1996) Influence of Hypoxia on Hepatic and Renal Endothelin Gene Expression. Pflügers Archiv, 431, 587-593. https://doi.org/10.1007/BF02191907
[41]
Michel, J.B., Dussaule, J.C., Choudat, L., Auzan, C., Nochy, D., Corvol, P. and Menard, J. (1986) Effects of Antihypertensive Treatment in One-Clip, Two Kidney Hypertension in Rats. Kidney International, 29, 1011-1020. https://doi.org/10.1038/ki.1986.101
[42]
Morganti, A., Marana, I., Airoldi, F., Alberti, C., Nador, B., Palatresi, S., et al. (2000) Plasma Endothelin Levels: A Meaningless Number? Journal of Cardiovascular Pharmacology, 35, S21-S23. https://doi.org/10.1097/00005344-200000002-00006
[43]
Teunissen, K.E., Postma, C.T., van Jaarsveld, B.C., Derkx, F. and Thien, T. (1997) Endothelin and Active Renin Levels in Essential Hypertension and Hypertension with Renal Artery Stenosis before and after Percutaneous Transluminal Renal Angioplasty. Journal of Hypertension, 15, 1791-1796. https://doi.org/10.1097/00004872-199715120-00091
[44]
Wang, D.S., Xie, H.H., Shen, F.M., Cai, G.J. and Su, D.F. (2005) Blood Pressure Variability, Cardiac Baroreflex Sensitivity and Organ Damage in Experimentally Hypertensive Rats. Clinical and Experimental Pharmacology and Physiology, 32, 545-552. https://doi.org/10.1111/j.1440-1681.2005.04229.x
[45]
Cao, J., Lu, X., Gao, F., Zhang, X., Xia, X. and Sun, H. (2020) Assessment of Neutrophil Gelatinase-Associated Lipocalin as an Early Biomarker for Canine Renal Ischemia-Reperfusion Injury. Annals of Translational Medicine, 8, Article 1491. https://doi.org/10.21037/atm-20-6314
[46]
Eirin, A., Gloviczki, M.L., Tang, H., Lerman, L.O., et al. (2012) Chronic Renovascular Hypertension Is Associated with Elevated Levels of Neutrophil Gelatinase-Associated Lipocalin. Nephrology Dialysis Transplantation, 27, 4153-4161. https://doi.org/10.1093/ndt/gfs370
[47]
Cianci, R., Simeoni, M., Cianci, E., Gigante, A., et al. (2023) Stem Cells in Kidney Ischemia: From Inflammation and Fibrosis to Renal Tissue Regeneration. International Journal of Molecular Sciences, 24, Article 4631. https://doi.org/10.3390/ijms24054631
[48]
Abumoawad, A., Saad, A., Ferguson, C.M., et al. (2019) Tissue Hypoxia, Inflammation, and Loss of Glomerular Filtration Rate in Human Atherosclerotic Renovascular Disease. Kidney International, 95, 948-957. https://doi.org/10.1016/j.kint.2018.11.039
[49]
Pruijm, M., Mendichovszky, I.A., Liss, P., Prasad, P.V., et al. (2018) Renal Blood Oxygenation Level-Dependent Magnetic Resonance Imaging to Measure Renal Tissue Oxygenation: A Statement Paper and Systematic Review. Nephrology Dialysis Transplantation, 33, ii22-ii28. https://doi.org/10.1093/ndt/gfy243
[50]
Gloviczki, M.L., Saad, A. and Textor, S.C. (2013) Blood Oxygen Level-Dependent (BOLD) MRI Analysis in Atherosclerotic Renal Artery Stenosis. Current Opinion in Nephrology and Hypertension, 22, 519-524. https://doi.org/10.1097/MNH.0b013e32836400b2
[51]
van der Bel, R., Coolen, B.F., Nedervee, A.J., Paul Krediet, C.T., et al. (2016) Magnetic Resonance Imaging-Derived Renal Oxygenation and Perfusion during Continuous, Steady-State Angiotensin-II Infusion in Healthy Humans. Journal of the American Heart Association, 5, e003185. https://doi.org/10.1161/JAHA.115.003185
[52]
Gloviczki, M.L., Glockner, J.F., Lerman, L.O., Textor, S.C., et al. (2010) Preserved Oxygenation Despite Reduced Blood Flow in Poststenotic Kidneys in Human Atherosclerotic Renal Artery Stenosis. Hypertension, 55, 961-966. https://doi.org/10.1161/HYPERTENSIONAHA.109.145227
[53]
Gloviczki, M.L., Keddi, M.T., Garovic, V.D., Textor, S.C., et al. (2013) TGF Expression and Macrophage Accumulation in Atherosclerotic Renal Artery Stenosis. Clinical Journal of the American Society of Nephrology, 8, 546-553. https://doi.org/10.2215/CJN.06460612
[54]
Herrmann, S.M., Saad, A., Eirin, A., Textor, S.C., et al. (2016) Differences in GFR and Tissue Oxygenation, and Interactions between Stenotic and Contralateral Kidneys in Unilateral Atherosclerotic Renovascular Disease. Clinical Journal of the American Society of Nephrology, 11, 458-469. https://doi.org/10.2215/CJN.03620415
[55]
Saad, A.,Wang, W., Herrmann, S.M., Textor, S.C., et al. (2016) Atherosclerotic Renal Artery Stenosis Is Associated with Elevated Cell Cycle Arrest Markers Related to Reduced Renal Blood Flow and Postcontrast Hypoxia. Nephrology Dialysis Transplantation, 31, 1855-1863. https://doi.org/10.1093/ndt/gfw265
[56]
Purwaningrum, M.Z., Jamilah, N.S., Purbantoro, S.D., Sawangmake, C. and Nantavisai, S. (2021) Comparative Characteristic Study from Bone Marrow-Derived Mesenchymal Stem Cells. Journal of Veterinary Science, 22, e74. https://doi.org/10.4142/jvs.2021.22.e74
[57]
Lee, P.-W., Wu, B.-S., Yang, C.-Y. and Lee, O.K.-S. (2021) Molecular Mechanisms of Mesenchymal Stem Cell-Based Therapy in Acute Kidney Injury. International Journal of Molecular Sciences, 22, Article 11406. https://doi.org/10.3390/ijms222111406
[58]
Birtwistle, L., Chen, X.M. and Pollock, C. (2021) Mesenchymal Stem Cell-Derived Extracellular Vesicles to the Rescue of Renal Injury. International Journal of Molecular Sciences, 22, Article 6596. https://doi.org/10.3390/ijms22126596
[59]
Zoja, C., Garcia, P.B., Rota, C., et al. (2012) Mesenchymal Stem Cell Therapy Promotes Renal Repair by Limiting Glomerular Podocyte and Progenitor Cell Dysfunction in Adriamycin-Induced Nephropathy. American Journal of Physiology-Renal Physiology, 303, F1370-F1381. https://doi.org/10.1152/ajprenal.00057.2012
[60]
Cavaglieri, R.C., Martini, D., Sogayar, M.C. and Noronha, I.L. (2009) Mesenchymal Stem Cells Delivered at the Subcapsule of the Kidney Ameliorate Renal Disease in the Rat Remnant Kidney Model. Transplantation Proceedings, 41, 947-951. https://doi.org/10.1016/j.transproceed.2009.01.072
[61]
Abumoawad, A., Saad, A., Ferguson, C.M., et al. (2020) In a Phase 1a Escalating Clinical Trial, Autologous Mesenchymal Stem Cell Infusion for Renovascular Disease Increases Blood Flow and the Glomerular Filtration Rate While Reducing Inflammatory Biomarkers and Blood Pressure. Kidney International, 97, 793-804. https://doi.org/10.1016/j.kint.2019.11.022
[62]
Dekel, B., Zangi, L., Shezen, E., Reisner, Y., et al. (2006) Isolation and Characterization of Nontubular Sca-1+Lin? Multipotent Stem/Progenitor Cells from Adult Mouse Kidney. Journal of the American Society of Nephrology, 17, 3300-3314. https://doi.org/10.1681/ASN.2005020195
[63]
Fang, Y., Tian, X., Bai, S., Li, D.H., et al. (2012) Autologous Transplantation of Adipose-Derived Mesenchymal Stem Cells Ameliorates Streptozotocin-Induced Diabetic Nephropathy in Rats by Inhibiting Oxidative Stress, Pro-Inflammatory Cytokines and the p38 MAPK Signaling Pathway. International Journal of Molecular Medicine, 30, 85-92.
[64]
Ni, W., Fang, Y., Xie, L., Liu, X.Y., et al. (2015) Adipose-Derived Mesenchymal Stem Cells Transplantation Alleviates Renal Injury in Streptozotocin-Induced Diabetic Nephropathy. Journal of Histochemistry & Cytochemistry, 63, 842-853. https://doi.org/10.1369/0022155415599039
[65]
Duan, Y., Luo, Q., Wang, Y., Shi, J., et al. (2020) Adipose Mesenchymal Stem Cell-Derived Extracellular Vesicles Containing MicroRNA-26a-5p Target TLR4 and Protect Against Diabetic Nephropathy. Journal of Biological Chemistry, 295, 12868-12884. https://doi.org/10.1074/jbc.RA120.012522
[66]
Tabas, I., Williams, K.J. and Borén, J. (2007) Subendothelial Lipoprotein Retention as the Initiating Process in Atherosclerosis: Update and Therapeutic Implications. Circulation, 116, 1832-1844. https://doi.org/10.1161/CIRCULATIONAHA.106.676890
[67]
Chistiakov, D.A., Melnichenko, A.A., Grechko, A.V., Myasoedova, V.A. and Orekhov, A.N. (2018) Potential of Ant-Inflammatory Agents for Treatment of Atherosclerosis. Experimental and Molecular Pathology, 104, 114-124. https://doi.org/10.1016/j.yexmp.2018.01.008
[68]
Xu, S.W., Ilyas, I., Little, P.J., Li, H., Weng, J.P., et al. (2021) Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and beyond: From Mechanism to Pharmacotherapies Suowen. Pharmacological Reviews, 73, 924-967. https://doi.org/10.1124/pharmrev.120.000096
[69]
Hang, L., Peng, Y., Xiang, R. and Li, Z.L. (2020) Ox-LDL Causes Endothelial Cell Injury through ASK1/NLRP3-Mediated Inflammasome Activation via Endoplasmic Reticulum Stress. Drug Design, Development and Therapy, 14, 731-744. https://doi.org/10.2147/DDDT.S231916
[70]
Khaw, K.T., Bingham, S., Welch, A., Day, N., et al. (2001) Relation between Plasma Ascorbic Acid and Mortality in Men and Women in EPIC-Norfolk Prospective Study: A Prospective Population Study. European Prospective Investigation into Cancer and Nutrition. Lancet, 357, 657-663. https://doi.org/10.1016/S0140-6736(00)04128-3
[71]
Ziegler, D., Nowak, H., Kempler, P., Low, P.A., et al. (2004) Treatment of Symptomatic Diabetic Polyneuropathy with the Antioxidant α-Lipoic Acid: A Meta-Analysis. Diabetic Medicine, 21, 114-121. https://doi.org/10.1111/j.1464-5491.2004.01109.x
[72]
Shuaib, A., Lees, K.R., Lyden, P. and SAINT II Trial Investigators (2007) NXY-059 for the Treatment of Acute Ischemic Stroke. The New England Journal of Medicine, 357, 562-571. https://doi.org/10.1056/NEJMoa070240
[73]
Bredemeier, M., Lopes, L.M., Eisenreich, M.A. and Guilherme Gomes Dias Campos (2018) Xanthine Oxidase Inhibitors for Prevention of Cardiovascular Events: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMC Cardiovascular Disorders, 18, Article No. 24. https://doi.org/10.1186/s12872-018-0757-9
[74]
Sharma, P., Dong, Y., Somers, V.K., Singh, P., et al. (2018) Intermittent Hypoxia Regulates Vasoactive Molecules and Alters Insulin-Signaling in Vascular Endothelial Cells. Scientific Reports, 8, Article No. 14110. https://doi.org/10.1038/s41598-018-32490-3
[75]
Cuadrado, A., Manda, G., Hassan, A., Schmidt, H.H.H.W., et al. (2018) Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacological Reviews, 70, 348-383. https://doi.org/10.1124/pr.117.014753
[76]
Anvari, E., Wikstrom, P., Walum, E. and Welsh, N. (2015) The Novel NADPH Oxidase 4 Inhibitor GLX351322 Counteracts Glucose Intolerance in High-Fat Diet-Treated C57BL/6 Mice. Free Radical Research, 49, 1308-1318. https://doi.org/10.3109/10715762.2015.1067697
[77]
Gray, S.P., Jha, J.C., Kennedy, K., van Bommel, E., Jandeleit-Dahm, K.A.M., et al. (2017b) Combined NOX1/4 Inhibition with GKT137831 in Mice Provides Dose-Dependent Reno- and Atheroprotection Even in Established Micro- and Macrovascular Disease. Diabetologia, 60, 927-937. https://doi.org/10.1007/s00125-017-4215-5
[78]
Gioscia-Ryan, R.A., Battson, M.L., Cuevas, L.M., et al. (2018) Mitochondria-Targeted Antioxidant Therapy with MitoQ Ameliorates Aortic Stiffening in Old Mice. Journal of Applied Physiology, 124, 1194-1202. https://doi.org/10.1152/japplphysiol.00670.2017
[79]
Tarantini, S., Yabluchanskiy, A., Csipo, T., Ungvari, Z., et al. (2019) Treatment with the Poly(ADP-Ribose) Polymerase Inhibitor PJ-34 Improves Cerebromicrovascular Endothelial Function, Neurovascular Coupling Responses and Cognitive Performance in Aged Mice, Supporting the NAD+ Depletion Hypothesis of Neurovascular Aging. GeroScience, 41, 533-542. https://doi.org/10.1007/s11357-019-00101-2
[80]
Haybar, H., Shokuhian, M., Bagheri, M., Davari, N. and Saki, N. (2019) Involvement of Circulating Inflammatory Factors in Prognosis and Risk of Cardiovascular Disease. Journal of Molecular and Cellular Cardiology, 132, 110-119. https://doi.org/10.1016/j.yjmcc.2019.05.010
[81]
Joseph, R., Pedro C.A., Robert, C.B., Shaker, A.M. (2011) Novel Therapeutic Targets for Preserving a Healthy Endothelium: Strategies for Reducing the Risk of Vascular and Cardiovascular Disease. Cardiology Journal, 18, 352-363.
[82]
Libby, P. (2017) Interleukin-1 β as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and beyond. Journal of the American College of Cardiology, 70, 2278-2289. https://doi.org/10.1016/j.jacc.2017.09.028
[83]
Li, X., Fang, P., Sun, Y. and Yang, X.F. (2020) Anti-Inflammatory Cytokines IL-35 and IL-10 Block Atherogenic Lysophosphatidylcholine-Induced, Mitochondrial ROS-Mediated Innate Immune Activation, but Spare Innate Immune Memory Signature in Endothelial Cells. Redox Biology, 28, Article ID: 101373. https://doi.org/10.1016/j.redox.2019.101373
[84]
Song, W., Zhang, C.L., Gou, L., Huang, Y., et al. (2019) Endothelial TFEB (Transcription Factor EB) Restrains IKK (IκB Kinase)-p65 Pathway to Attenuate Vascular Inflammation in Diabetic db/db Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 719-730. https://doi.org/10.1161/ATVBAHA.119.312316
[85]
SenBanerjee, S., Lin, Z., Atkins, G.B., Jain, M.K., et al. (2004) KLF2 Is a Novel Transcriptional Regulator of Endothelial Proinflammatory Activation. Journal of Experimental Medicine, 199, 1305-1315. https://doi.org/10.1084/jem.20031132
[86]
Hamik, A., Lin, Z., Kumar, A. Jain, M.K., et al. (2007) Kruppel-Like Factor 4 Regulates Endothelial Inflammation. Journal of Biological Chemistry, 282, 13769-13779. https://doi.org/10.1074/jbc.M700078200
[87]
Sun, Z., Han, Y., Song, S., Liu, Y.H., et al. (2019) Activation of GPR81 by Lactate Inhibits Oscillatory Shear Stress-Induced Endothelial Inflammation by Activating the Expression of KLF2. IUBMB Life, 71, 2010-2019. https://doi.org/10.1002/iub.2151
[88]
Parmar, K.M., Nambudiri, V., Dai, G., García-Cardena, G., et al. (2005) Statins Exert Endothelial Atheroprotective Effects via the KLF2 Transcription Factor. Journal of Biological Chemistry, 280, 26714-26719. https://doi.org/10.1074/jbc.C500144200
[89]
Li, W., Li, Y., Zhao, Y. and Ren, L. (2020) The Protective Effects of Aloperine against ox-LDL-Induced Endothelial Dysfunction and Inflammation in HUVECs. Artificial Cells, Nanomedicine, and Biotechnology, 48, 107-115. https://doi.org/10.1080/21691401.2019.1699816
[90]
Rahadian, A., Fukuda, D., Salim, H.M., Sata, M., et al. (2020) Canagliflozin Prevents Diabetes-Induced Vascular Dysfunction in ApoE-Deficient Mice. Journal of Atherosclerosis and Thrombosis, 27, 1141-1151. https://doi.org/10.5551/jat.52100
[91]
Nasiri-Ansari, Ν., Dimitriadis, G.K., Agrogiannis, G., Kassi, E., et al. (2018) Canagliflozin Attenuates the Progression of Atherosclerosis and Inflammation Process in APOE Knockout Mice. Cardiovascular Diabetology, 17, Article No. 106. https://doi.org/10.1186/s12933-018-0749-1
[92]
Lee, S.G., Lee, S.J., Lee, J.J., Jang, Y., et al. (2020) Anti-Inflammatory Effect for Atherosclerosis Progression by Sodium-Glucose Cotransporter 2(SGLT-2) Inhibitor in a Normoglycemic Rabbit Model. Korean Circulation Journal, 50, 443-457. https://doi.org/10.4070/kcj.2019.0296
[93]
Al-Sharea, A., Murphy, A.J., Huggins, L.A., Nagareddy, P.R., et al. (2018) SGLT2 Inhibition Reduces Atherosclerosis by Enhancing Lipoprotein Clearance in Ldlr-/- Type 1 Diabetic Mice. Atherosclerosis, 271, 166-176. https://doi.org/10.1016/j.atherosclerosis.2018.02.028
[94]
Shigiyama, F., Kumashiro, N., Miyagi, M., Hirose, T., et al. (2017) Effectiveness of Dapagliflozin on Vascular Endothelial Function and Glycemic Control in Patients with Early-Stage Type 2 Diabetes Mellitus: DEFENCE Study. Cardiovascular Diabetology, 16, Article No. 84. https://doi.org/10.1186/s12933-017-0564-0
[95]
Gaspari, T., Spizzo, I., Liu, H., Dear, A.E., et al. (2018) Dapagliflozin Attenuates Human Vascular Endothelial Cell Activation and Induces Vasorelaxation: A Potential Mechanism for Inhibition of Atherogenesis. Diabetes & Vascular Disease Research, 15, 64-73. https://doi.org/10.1177/1479164117733626
[96]
Inzucchi, S.E., Khunti, K., Fitchett, D.H., Zinman, B., et al. (2020) Cardiovascular Benefit of Empagliflozin across the Spectrum of Cardiovascular Risk Factor Control in the Empa-Reg Outcome Trial. The Journal of Clinical Endocrinology & Metabolism, 105, 3025-3035. https://doi.org/10.1210/clinem/dgaa321
[97]
Han, J.H., Oh, T.J., Lee, G., Lim, S., et al. (2017) The Beneficial Effects of Empagliflozin, An SGLT2 Inhibitor, on Atherosclerosis in ApoE-/- Mice Fed a Western Diet. Diabetologia, 60, 364-376. https://doi.org/10.1007/s00125-016-4158-2
[98]
Khemais-Benkhiat, S., Belcastro, E., Idris-Khodja, N., Schini-Kerth, V.B., et al. (2020) Angiotensin II-Induced Redox-Sensitive SGLT1 and 2 Expression Promotes High Glucose-Induced Endothelial Cell Senescence. Journal of Cellular and Molecular Medicine, 24, 2109-2122. https://doi.org/10.1111/jcmm.14233