全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Garcinia Kola and Kolaviron Attenuates Bisphenol A-Induced Memory Impairment and Hippocampal Neuroinflammation in Male Wistar Rats

DOI: 10.4236/jbm.2024.122009, PP. 111-130

Keywords: Bisphenol A, Memory Impairment, Neuroinflammation, Neuroprotection, Garcinia Kola, Kolaviron, Antioxidant

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bisphenol A (BPA), a toxicant which can leach into food from plastic containers, is reported to induce neurotoxicity among others via oxidative mechanisms. However, antioxidant compounds have been suggested to mitigate BPA-induced toxicities. Garcinia kola (GK) and its bioactive compound, kolaviron, are well-established natural antioxidants, which can exert protective effects against BPA-induced toxicities. This study was designed to investigate the likely mitigating effect of GK and kolaviron on BPA-induced memory impairment and hippocampal neuroinflammation in male Wistar rats. Thirty-five rats were equally grouped and treated as follows: I and II received distilled water and corn oil, respectively at 0.2 mL, while III - VII received BPA (50 mg/kg), BPA + GK (200 mg/kg), BPA + kolaviron (200 mg/kg), GK and kolaviron, respectively for 28 days p.o. Thereafter, behavioral studies were done using the Novel Object Recognition and Y maze tests. Subsequently under anaesthesia, the hippocampus in each animal was dissected out, homogenized and analysed for malondialdehyde, superoxide dismutase, catalase, reduced glutathione, glutathione transferase, nitrites, interleukin-6, tumour necrosis factor-α, acetylcholinesterase, glutamate acid decarboxylase, and arginase activity. Data were analyzed by ANOVA and Tukey Post-hoc test at p < 0.05. Animals in group III significantly (p < 0.05) exhibited memory impairment which was accompanied by increased oxidative stress, neuroinflammation and altered hippocampal neurochemicals. Treatment with GK and Kolaviron (groups IV and V) significantly mitigated the aberrations observed in the BPA only exposure group. This study suggests that Garcinia kola and Kolaviron mitigate bisphenol A-induced memory impairment and neuroinflammation via antioxidant potentiation and neurotransmitter balance.

References

[1]  Goodman, J. and Peterson, M. (2014) Bisphenol A. In: Wexler, P., Ed., Encyclopedia of Toxicology, 3rd Edition, Springer, Berlin, 514-518.
https://doi.org/10.1016/B978-0-12-386454-3.00366-3
[2]  Wazir, U. and Mokbel, K. (2019) Bisphenol A: A Concise Review of Literature and a Discussion of Health and Regulatory Implications. In Vivo, 33, 1421-1423.
https://doi.org/10.21873/invivo.11619
[3]  Chouhan, S., Yadav, S.K., Prakash, J., Westfall, S., Ghosh, A., Agarwal, N.K., et al. (2014) Increase in the Expression of Inducible Nitric Oxide Synthase on Exposure to Bisphenol A: A Possible Cause for Decline in Steroidogenesis in Male Mice. Environmental Toxicology and Pharmacology, 39, 405-416.
https://doi.org/10.1016/j.etap.2014.09.014
[4]  Musachio, E.A.S., Stífani, M.A., Vandreza, C.B., Shanda, F.C., Mustaf, M.M.D., Marcia, R.P., et al. (2020) Bisphenol A Exposure Is Involved in the Development of Parkinson like Disease in Drosophila melanogaster. Food and Chemical Toxicology, 137, 11-28.
https://doi.org/10.1016/j.fct.2020.111128
[5]  Kobayashi, K., Liu, Y., Ichikawa, H., Takemura, S. and Minamiyama, Y. (2020) Effects of Bisphenol A on Oxidative Stress in the Rat Brain. Antioxidants, 9, Article No. 240.
https://doi.org/10.3390/antiox9030240
[6]  Wassenaar, P.N.H., Trasande, L. and Legler, J. (2017) Systematic Review and Meta-Analysis of Early-Life Exposure to Bisphenol A and Obesity-Related Outcomes in Rodents. Environmental Health Perspectives, 125, Article ID: 106001.
https://doi.org/10.1289/EHP1233
[7]  Nesan, D., Sewell, L.C. and Kurrasch, D.M. (2018) Opening the Black Box of Endocrine Disruption of Brain Development: Lessons from the Characterization of Bisphenol A. Hormones and Behavior, 101, 50-58.
https://doi.org/10.1016/j.yhbeh.2017.12.001
[8]  Murata, M. and Kang, J.H. (2018) Bisphenol A (BPA) and Cell Signaling Pathways. Biotechnology Advances, 36, 311-327.
https://doi.org/10.1016/j.biotechadv.2017.12.002
[9]  Rosenfeld, C.S. (2017) Neuroendocrine Disruption in Animal Models Due to Exposure to Bisphenol A Analogues. Frontiers in Neuroendocrinology, 47, 123-133.
https://doi.org/10.1016/j.yfrne.2017.08.001
[10]  Santoro, A., Chianese, R., Troisi, J., Richards, S., Nori, S.L., Fasano, S., et al. (2019) Neuro-Toxic and Reproductive Effects of BPA. Current Neuropharmacology, 17, 1109-1132.
https://doi.org/10.2174/1570159X17666190726112101
[11]  Resnik, D. and Elliott, K. (2014) Bisphenol A and Risk Management Ethics. Bioethics, 29, 182-189.
https://doi.org/10.1111/bioe.12079
[12]  Inadera, H. (2015) Neurological Effects of Bisphenol A and Its Analogues. International Journal of Medical Sciences, 12, 926-936.
https://doi.org/10.7150/ijms.13267
[13]  Sheppard, P.A.S., Choleris, E. and Galea, L.A.M. (2019) Structural Plasticity of the Hippocampus in Response to Estrogens in Female Rodents. Molecular Brain, 12, Article No. 22.
https://doi.org/10.1186/s13041-019-0442-7
[14]  Erukainure, O.L., Salau, V.F., Chukwuma, C.I. and Islam, M.S. (2021) Kolaviron: A Biflavonoid with Numerous Health Benefits. Current Pharmaceutical Design, 27, 490-504.
https://doi.org/10.2174/1381612826666201113094303
[15]  Farombi, E.O. (2011) Bitter Kola (Garcinia kola) Seeds and Hepatoprotection. In: Preedy, V.R., Watson, R.R. and Patel, V.B., Eds., Nuts and Seeds in Health and Disease Prevention, Elsevier, Amsterdam, 221-228.
https://doi.org/10.1016/B978-0-12-375688-6.10026-X
[16]  Tauchen, J., Frankova, A., Manourova, A., et al. (2023) Garcinia kola: A Critical Review on Chemistry and Pharmacology of an Important West African Medicinal Plant. Phytochemistry Reviews, 22, 1305-1351.
https://doi.org/10.1007/s11101-023-09869-w
[17]  Akpantah, A.O., Oremosu, A.A., Noronha, C.C., Ekanem, T.B. and Okanlawon, A.O. (2005) Effects of Garcinia kola Seed Extract on Ovulation, Oestrous Cycle and Foetal Development in Cyclic Female Sprague-Dawley Rats. Nigerian Journal of Physiological Sciences, 20, 58-62.
[18]  Olaleye, S.B., Farombi, E.O., Adewoye, E.A., Owoyele, B.V., Onasanwo, S.A. and Elegbe, R.A. (2000) Analgesic and Anti-Inflammatory Effects of Kolaviron (a Garcinia kola Seed Extract). African Journal of Biomedical Research, 3, 171-174.
[19]  Farombi, E.O., Adedara, I.A., Ajayi, B.O., Ayepola, O.R. and Egbeme, E.E. (2013) Kolaviron, A Natural Antioxidant and Anti-Inflammatory Phytochemical Prevents Dextran Sulphate Sodium-Induced Colitis in Rats. Basic & Clinical Pharmacology & Toxicology, 113, 49-55.
https://doi.org/10.1111/bcpt.12050
[20]  Ige, A.O., Adebayo, O.O., Adele, B.O., Odetola, A.O., Emediong, I.E. and Adewoye, E.O. (2022) Genistein Mitigates the Gastro-Toxic Effects of Bisphenol A in Male Wistar Rats. Journal of Biosciences and Medicines, 10, 60-78.
https://doi.org/10.4236/jbm.2022.109006
[21]  National Research Council (1996) Guide for the Care and Use of Laboratory Animals. National Academy Press, Washington DC.
[22]  Antunes, M. and Biala, G. (2012) The Novel Object Recognition Memory: Neurobiology, Test Procedure, and Its Modifications. Cognitive Processing, 13, 93-110.
https://doi.org/10.1007/s10339-011-0430-z
[23]  Kraeuter, A.K., Guest, P.C. and Sarnyai, Z. (2019) The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice. Methods in Molecular Biology, 1916, 105-111.
https://doi.org/10.1007/978-1-4939-8994-2_10
[24]  Van Pelt, L.F. (1977) Ketamine and Xylazine for Surgical Anesthesia in Rats. Journal of the American Veterinary Medical Association, 171, 842-844.
[25]  Nagababu, E., Rifkind, J.M., Sesikeran, B. and Lakshmaiah, N. (2010) Assessment of Antioxidant Activities of Eugenol by in Vitro and in Vivo Methods. Journal of Molecular Biology (Clifton, N.J.), 610, 165-180.
https://doi.org/10.1007/978-1-60327-029-8_10
[26]  Misra, H.P. and Fridovich, I. (1972) The Role of Superoxide Anion in the Autoxidation of Epinephrine and a Simple Assay for Superoxide Dismutase. Journal of Biological Chemistry, 247, 3170-3175.
https://doi.org/10.1016/S0021-9258(19)45228-9
[27]  Goth, L. (1991) A Simple Method for Determination of Serum Catalase Activity and Revision of Reference Range. Clinica Chimica Acta, 196, 143-151.
https://doi.org/10.1016/0009-8981(91)90067-M
[28]  Jollow, D.J., Mitchell, J.R., Zampaglione, N. and Gillete, J.R. (1974) Bromobenzene Induced Liver Necrosis. Protective Role of Glutathione and Evidence for 3,4-Bromobenzene Oxide as a Hepatotoxic Metabolite. Pharmacology, 1, 151-169.
https://doi.org/10.1159/000136485
[29]  Habig, W.H., Pabst, M.J. and Jakoby, W.B. (1974) Glutathione S-Transferases. The First Enzymatic Step in Mercapturic Acid Formation. Journal of Biological Chemistry, 249, 7130-7139.
https://doi.org/10.1016/S0021-9258(19)42083-8
[30]  Green, L., Wagner, D., Glogowski, J., Skipper, P., Wishnok, J. and Tannenbaum, S. (1982) Analysis of Nitrate, Nitrite, and 15 N Nitrate in Biological Fluids. Analytical Biochemistry, 126, 131-138.
https://doi.org/10.1016/0003-2697(82)90118-X
[31]  Ellman, G.L., Courtney, K.D., Andres Jr., V. and Feather-Stone, R.M. (1961) A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochemical Pharmacology, 7, 88-95.
https://doi.org/10.1016/0006-2952(61)90145-9
[32]  Yu, K., Hu, S., Huang, J. and Mei, L. (2011) A High-Throughput Colorimetric Assay to Measure the Activity of Glutamate Decarboxylase. Enzyme and Microbial Technology, 49, 272-276.
https://doi.org/10.1016/j.enzmictec.2011.06.007
[33]  Jeyabalan, G., Klune, J.R., Nakao, A., Martik, N., Wu, G., Tsung, A., et al. (2008) Arginase Blockade Protects against Hepatic Damage in Warm Ischemia-Reperfusion. Nitric Oxide, 19, 29-35.
https://doi.org/10.1016/j.niox.2008.04.002
[34]  Anand, K.S. and Dhikav, V. (2012) Hippocampus in Health and Disease: An Overview. Annals of Indian Academy of Neurology, 15, 239-246.
https://doi.org/10.4103/0972-2327.104323
[35]  Zhou, Y., Wang, Z., Xia, M., Zhuang, S., Gong, X., Pan, J., et al. (2017) Neurotoxicity of Low Bisphenol A (BPA) Exposure for Young Male Mice: Implications for Children Exposed to Environmental Levels of BPA. Environmental Pollution, 229, 40-48.
https://doi.org/10.1016/j.envpol.2017.05.043
[36]  Chen, Z., Li, T., Zhang, L., Wang, H. and Hu, F. (2018) Bisphenol A Exposure Remodels Cognition of Male Rats Attributable to Excitatory Alterations in the Hippocampus and Visual Cortex. Journal of Toxicology, 410, 132-141.
https://doi.org/10.1016/j.tox.2018.10.002
[37]  Haam, J. and Yakel, J.L. (2017) Cholinergic Modulation of the Hippocampal Region and Memory Function. Journal of Neurochemistry, 142, 111-121.
https://doi.org/10.1111/jnc.14052
[38]  Mahdavinia, M., Ahangarpour, A., Zeidooni, L., Samimi, A., Alizadeh, S., Dehghani, M.A., et al. (2019) Protective Effect of Naringin on Bisphenol A-Induced Cognitive Dysfunction and Oxidative Damage in Rats. International Journal of Molecular and Cellular Medicine, 8, 141-153.
[39]  Miyagawa, K., Narita, M., Narita, M., Akama, H. and Suzuki, T. (2007) Memory Impairment Associated with a Dysfunction of the Hippocampal Cholinergic System Induced by Prenatal and Neonatal Exposures to Bisphenol-A. Neuroscience Letters, 418, 236-241.
https://doi.org/10.1016/j.neulet.2007.01.088
[40]  Solimena, M. and De Camilli, P. (1991) Autoimmunity to Glutamic Acid Decarboxylase (GAD) in Stiff-Man Syndrome and Insulin-Dependent Diabetes Mellitus. Trends in Neurosciences, 14, 452-457.
https://doi.org/10.1016/0166-2236(91)90044-U
[41]  Khadrawy, Y.A., Noor, N.A., Mourad, I.M. and Ezz, H.S. (2016) Neurochemical Impact of Bisphenol A in the Hippocampus and Cortex of Adult Male Albino Rats. Toxicology and Industrial Health, 32, 1711-1719.
https://doi.org/10.1177/0748233715579803
[42]  Budson, A.E. and Solomon, P.R. (2016) Alzheimer’s Disease Dementia and Mild Cognitive Impairment Due to Alzheimer’s Disease. In: Budson, A.E. and Solomon, P.R., Eds., Memory Loss, Alzheimer’s Disease, and Dementia, 2nd Edition, Elsevier, Amsterdam, 47-69.
https://doi.org/10.1016/B978-0-323-28661-9.00004-4
[43]  Madan, S., Kron, B., Jin, Z., Al Shamy, G., Campeau, P.M., Sun, Q., et al. (2018) Arginase Overexpression in Neurons and Its Effect on Traumatic Brain Injury. Molecular Genetics and Metabolism, 125, 112-117.
https://doi.org/10.1016/j.ymgme.2018.07.007
[44]  Caldwell, R.W., Rodriguez, P.C., Toque, H.A., Narayanan, S.P. and Caldwell, R.B. (2018) Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiological Reviews, 98, 641-665.
https://doi.org/10.1152/physrev.00037.2016
[45]  Zhou, L., Sun, B., Liu, C., Fan, Y., Zhu, Y., Wu, W., et al. (2015) Upregulation of Arginase Activity Contributes to Intracellular ROS Production Induced by High Glucose in H9c2 Cells. International Journal of Clinical and Experimental Pathology, 8, 2728-2736.
[46]  Takahashi, M., Komada, M., Miyazawa, K., Goto, S. and Ikeda, Y. (2018) Bisphenol A Exposure Induces Increased Microglia and Microglial Related Factors in the Murine Embryonic Dorsal Telencephalon and Hypothalamus. Toxicology Letters, 284, 113-119.
https://doi.org/10.1016/j.toxlet.2017.12.010
[47]  Naomi, R., Yazid, M.D., Bahari, H., Keong, Y.Y., Rajandram, R., Embong, H., et al. (2022) Bisphenol A (BPA) Leading to Obesity and Cardiovascular Complications: A Compilation of Current in Vivo Study. International Journal of Molecular Sciences, 23, Article No. 2969.
https://doi.org/10.3390/ijms23062969
[48]  Cobley, J.N., Fiorello, M.L. and Bailey, D.M. (2018) 13 Reasons Why the Brain Is Susceptible to Oxidative Stress. Redox Biology, 15, 490-503.
https://doi.org/10.1016/j.redox.2018.01.008
[49]  Ayala, A., Munoz, M.F. and Argüelles, S. (2014) Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity, 2014, Article ID: 360438.
https://doi.org/10.1155/2014/360438
[50]  Oyagbemi, A.A., Omobowale, T.O., Adedapo, A.A. and Yakubu, M.A. (2016) Kolaviron, Biflavonoid Complex from the Seed of Garcinia kola Attenuated Angiotensin II- and Lypopolysaccharide-Induced Vascular Smooth Muscle Cell Proliferation and Nitric Oxide Production. Pharmacognosy Research, 8, S50.
https://doi.org/10.4103/0974-8490.178647
[51]  Boudiba, S., Kucukaydin, S., Tamfu, A.N., Blaise, K., Munvera, A.M. and Arab, Y. (2023) HPLC-DAD Phenolic Composition, Antioxidant, Anticholinesterase, Antidiabetic and Anti-Quorum Sensing Properties of Bitter Kola (Garcinia kola) and Kolanut (Cola acuminata). Pharmacognosy Research, 15, 373-383.
https://doi.org/10.5530/pres.15.2.040
[52]  Akinmoladun, A.C., Saliu, I.O., Olowookere, B.D., Ojo, O.B., Olaleye, M.T., Farombi, E.O., et al. (2018) Improvement of 2-Vessel Occlusion Cerebral Ischaemia/Reperfusion-Induced Corticostriatal Electrolyte and Redox Imbalance, Lactic Acidosis and Modified Acetylcholinesterase Activity by Kolaviron Correlates with Reduction in Neurobehavioural Deficits. Annals of Neurosciences, 25, 53-62.
https://doi.org/10.1159/000484517
[53]  Picon-Pages, P., Garcia-Buendia, J. and Munoz, F.J. (2019) Functions and Dysfunctions of Nitric Oxide in Brain. Biochimica et Biophysica Acta: Molecular Basis of Disease, 1865, 1949-1967.
https://doi.org/10.1016/j.bbadis.2018.11.007
[54]  Abodunrin, O.P., Onifade, O.F. and Adegboyega, A.E. (2022) Therapeutic Capability of Five Active Compounds in Typical African Medicinal Plants against Main Proteases of SARS-CoV-2 by Computational Approach. Informatics in Medicine Unlocked, 31, Article ID: 100964.
https://doi.org/10.1016/j.imu.2022.100964
[55]  Farombi, E.O., Tahnteng, J.G., Agboola, A.O., Nwankwo, J.O. and Emerole, G.O. (2000) Chemoprevention of 2-Acetylaminofluorene-Induced Hepatotoxicity and Lipid Peroxidation in Rats by Kolaviron—A Garcinia kola Seed Extract. Food and Chemical Toxicology, 38, 535-541.
https://doi.org/10.1016/S0278-6915(00)00039-9
[56]  Farombi, E.O., Shrotriya, S. and Surh, Y.J. (2009) Kolaviron Inhibits Dimethyl Nitrosamine-Induced Liver Injury by Suppressing COX-2 and iNOS Expression via NF-κB and AP-1. Life Sciences, 84, 149-155.
https://doi.org/10.1016/j.lfs.2008.11.012
[57]  Emmanuel, O., Uche, M.E., Dike, E.D., Etumnu, L.R., Ugbogu, O.C. and Ugbogu, E.A. (2022) A Review on Garcinia kola Heckel: Traditional Uses, Phytochemistry, Pharmacological Activities, and Toxicology. Journal of Biomarkers, 27, 101-117.
https://doi.org/10.1080/1354750X.2021.2016974
[58]  Osifo, U.C., Akpamu, U., Otamere, H.O. and Ekhator, C.N. (2011) A Murine Model Study on the Effect of Garcinia kola on Body Weight. Archives of Applied Science Research, 3, 526-531.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133