Diabetic macular edema (DME) is a common ocular complication of diabetes mellitus (DM) and an important cause of vision loss. The pathogenesis of DME is complex and can occur at any time of diabetic retinopathy (DR). Effective methods of treating DME are essential to prevent irreversible damage to visual function. To date, laser photocoagulation, vascular endothelial growth factor (VEGF) inhibitors, and corticosteroids have demonstrated their therapeutic efficacy in large randomized controlled trials and real-life observational studies. Clinicians need to consider various factors, such as efficacy, safety, accessibility, and cost, in the selection of various options. This review summarizes the current therapeutic approaches for DME to provide new references for the treatment of DM.
References
[1]
Teo, Z.L., Tham, Y.C., Yu, M., et al. (2021) Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-Analysis. Ophthalmology, 128, 1580-1591. https://doi.org/10.1016/j.ophtha.2021.04.027
[2]
Ting, D.S., Cheung, G.C. and Wong, T.Y. (2016) Diabetic Retinopathy: Global Prevalence, Major Risk Factors, Screening Practices and Public Health Challenges: A Review. Clinical & Experimental Ophthalmology, 44, 260-277. https://doi.org/10.1111/ceo.12696
[3]
Tan, G.S., Cheung, N., Sim, R., et al. (2017) Diabetic Macular Oedema. The Lancet Diabetes & Endocrinology, 5, 143-155. https://doi.org/10.1016/S2213-8587(16)30052-3
[4]
Bressler, S.B., Ayala, A.R., Bressler, N.M., et al. (2016) Persistent Macular Thickening after Ranibizumab Treatment for Diabetic Macular Edema with Vision Impairment. JAMA Ophthalmology, 134, 278-285. https://doi.org/10.1001/jamaophthalmol.2015.5346
[5]
Janssen, E.M., Dy, S.M., Meara, A.S., et al. (2020) Analysis of Patient Preferences in Lung Cancer—Estimating Acceptable Tradeoffs between Treatment Benefit and Side Effects. Patient Preference and Adherence, 14, 927-937. https://doi.org/10.2147/PPA.S235430
[6]
Schmidt-Erfurth, U., Garcia-Arumi, J., Bandello, F., et al. (2017) Guidelines for the Management of Diabetic Macular Edema by the European Society of Retina Specialists (EURETINA). Ophthalmologica, 237, 185-222. https://doi.org/10.1159/000458539
[7]
Sim, R., Sundstrom, J.M. and Antonetti, D.A. (2014) Ocular Anti-VEGF Therapy for Diabetic Retinopathy: The Role of VEGF in the Pathogenesis of Diabetic Retinopathy. Diabetes Care, 37, 893-899. https://doi.org/10.2337/dc13-2002
Papadopoulos, N., Martin, J., Ruan, Q., et al. (2012) Binding and Neutralization of Vascular Endothelial Growth Factor (VEGF) and Related Ligands by VEGF Trap, Ranibizumab and Bevacizumab. Angiogenesis, 15, 171-185. https://doi.org/10.1007/s10456-011-9249-6
[10]
Gaudreault, J., Fei, D., Beyer, J.C., et al. (2007) Pharmacokinetics and Retinal Distribution of Ranibizumab, A Humanized Antibody Fragment Directed against VEGF-A, following Intravitreal Administration in Rabbits. Retina, 27, 1260-1266. https://doi.org/10.1097/IAE.0b013e318134eecd
[11]
Nguyen, Q.D., Brown, D.M., Marcus, D.M., et al. (2012) Ranibizumab for Diabetic Macular Edema: Results from 2 Phase III Randomized Trials: RISE and RIDE. Ophthalmology, 119, 789-801. https://doi.org/10.1016/j.ophtha.2011.12.039
[12]
Mitchell, P., Bandello, F., Schmidt-Erfurth, U., et al. (2011) The RESTORE Study: Ranibizumab Monotherapy or Combined with Laser versus Laser Monotherapy for Diabetic Macular Edema. Ophthalmology, 118, 615-625. https://doi.org/10.1016/j.ophtha.2011.01.031
[13]
Ishibashi, T., Li, X., Koh, A., et al. (2015) The REVEAL Study: Ranibizumab Monotherapy or Combined with Laser versus Laser Monotherapy in Asian Patients with Diabetic Macular Edema. Ophthalmology, 122, 1402-1415. https://doi.org/10.1016/j.ophtha.2015.02.006
[14]
Pearce, I., Banerjee, S., Burton, B.J., et al. (2015) Ranibizumab 0.5 Mg for Diabetic Macular Edema with Bimonthly Monitoring after a Phase of Initial Treatment: 18-Month, Multicenter, Phase IIIB RELIGHT Study. Ophthalmology, 122, 1811-1819. https://doi.org/10.1016/j.ophtha.2015.05.038
[15]
Elman, M.J., Ayala, A., Bressler, N.M., et al. (2015) Intravitreal Ranibizumab for Diabetic Macular Edema with Prompt versus Deferred Laser Treatment: 5-Year Randomized Trial Results. Ophthalmology, 122, 375-381. https://doi.org/10.1016/j.ophtha.2014.08.047
[16]
Schmidt-Erfurth, U., Lang, G.E., Holz, F.G., et al. (2014) Three-Year Outcomes of Individualized Ranibizumab Treatment in Patients with Diabetic Macular Edema: The RESTORE Extension Study. Ophthalmology, 121, 1045-1053. https://doi.org/10.1016/j.ophtha.2013.11.041
[17]
Srinivas, S., Verma, A., Nittala, M.G., et al. (2020) Effect of Intravitreal Ranibizumab on Intraretinal Hard Exudates in Eyes with Diabetic Macular Edema. American Journal of Ophthalmology, 211, 183-190. https://doi.org/10.1016/j.ajo.2019.11.014
[18]
Chatziralli, I., Theodossiadis, G., Dimitriou, E., et al. (2020) Association between the Patterns of Diabetic Macular Edema and Photoreceptors’ Response after Intravitreal Ranibizumab Treatment: A Spectral-Domain Optical Coherence Tomography Study. International Ophthalmology, 40, 2441-2448. https://doi.org/10.1007/s10792-020-01423-3
[19]
Mori, Y., Suzuma, K., Uji, A., et al. (2016) Restoration of Foveal Photoreceptors after Intravitreal Ranibizumab Injections for Diabetic Macular Edema. Scientific Reports, 6, Article No. 39161. https://doi.org/10.1038/srep39161
[20]
Yigit, K., Inan, ü., Inan, S., et al. (2021) Long-Term Full-Field and Multifocal Electroretinographic Changes after Treatment with Ranibizumab in Patients with Diabetic Macular Edema. International Ophthalmology, 41, 1487-1501. https://doi.org/10.1007/s10792-021-01712-5
[21]
Comyn, O., Sivaprasad, S., Peto, T., et al. (2014) A Randomized Trial to Assess Functional and Structural Effects of Ranibizumab versus Laser in Diabetic Macular Edema (The LUCIDATE Study). American Journal of Ophthalmology, 157, 960-970. https://doi.org/10.1016/j.ajo.2014.02.019
[22]
Zarbin, M.A., Dunger-Baldauf, C., Haskova, Z., et al. (2017) Vascular Safety of Ranibizumab in Patients with Diabetic Macular Edema: A Pooled Analysis of Patient-Level Data from Randomized Clinical Trials. JAMA Ophthalmology, 135, 424-431. https://doi.org/10.1001/jamaophthalmol.2017.0455
[23]
Brown, D.M., Emanuelli, A., Bandello, F., et al. (2022) KESTREL and KITE: 52-Week Results from Two Phase III Pivotal Trials of Brolucizumab for Diabetic Macular Edema. American Journal of Ophthalmology, 238, 157-172. https://doi.org/10.1016/j.ajo.2022.01.004
[24]
Wykoff, C.C., Garweg, J.G., Regillo, C., et al. (2023) KESTREL and KITE Phase 3 Studies: 100-Week Results with Brolucizumab in Patients with Diabetic Macular Edema. American Journal of Ophthalmology, 260, 70-83. https://doi.org/10.1016/j.ajo.2023.07.012
[25]
Singh, R.P., Barakat, M.R., Ip, M.S., et al. (2023) Efficacy and Safety of Brolucizumab for Diabetic Macular Edema: The KINGFISHER Randomized Clinical Trial. JAMA Ophthalmology, 141, 1152-1160. https://doi.org/10.1001/jamaophthalmol.2023.5248
[26]
Abu Serhan, H., Taha, M.J.J., Abuawwad, M.T., et al. (2023) Safety and Efficacy of Brolucizumab in the Treatment of Diabetic Macular Edema and Diabetic Retinopathy: A Systematic Review and Meta-Analysis. Seminars in Ophthalmology. https://doi.org/10.1080/08820538.2023.2271095
[27]
Hirano, T., Kumazaki, A., Tomihara, R., et al. (2023) Evaluating Initial Responses to Brolucizumab in Patients Undergoing Conventional Anti-VEGF Therapy for Diabetic Macular Edema: A Retrospective, Single-Center, Observational Study. Scientific Reports, 13, Article No. 10901. https://doi.org/10.1038/s41598-023-37726-5
[28]
Heier, J.S., Korobelnik, J.F., Brown, D. M., et al. (2016) Intravitreal Aflibercept for Diabetic Macular Edema: 148-Week Results from the VISTA and VIVID Studies. Ophthalmology, 123, 2376-2385. https://doi.org/10.1016/j.ophtha.2016.07.032
[29]
Dhoot, D.S., Moini, H., Reed, K., et al. (2023) Functional Outcomes of Sustained Improvement on Diabetic Retinopathy Severity Scale with Intravitreal Aflibercept in the VISTA and VIVID Trials. Eye, 37, 2020-2025. https://doi.org/10.1038/s41433-022-02058-7
[30]
Chen, Y.X., Li, X.X., Yoon, Y.H., et al. (2020) Intravitreal Aflibercept versus Laser Photocoagulation in Asian Patients with Diabetic Macular Edema: The VIVID-East Study. Clinical Ophthalmology, 14, 741-750. https://doi.org/10.2147/OPTH.S235267
[31]
Wang, X., He, X., Qi, F., et al. (2022) Different Anti-Vascular Endothelial Growth Factor for Patients with Diabetic Macular Edema: A Network Meta-Analysis. Frontiers in Pharmacology, 13, Article 876386. https://doi.org/10.3389/fphar.2022.876386
[32]
Xie, X., Lian, C., Zhang, Z., et al. (2023) Aflibercept for Long-Term Treatment of Diabetic Macular Edema and Proliferative Diabetic Retinopathy: A Meta-Analysis. Frontiers in Endocrinology, 14, Article 1144422. https://doi.org/10.3389/fendo.2023.1144422
[33]
Bhandari, S., Nguyen, V., Fraser-Bell, S., et al. (2020) Ranibizumab or Aflibercept for Diabetic Macular Edema: Comparison of 1-Year Outcomes from the Fight Retinal Blindness! Registry. Ophthalmology, 127, 608-615. https://doi.org/10.1016/j.ophtha.2019.11.018
[34]
Sarda, V., Eymard, P., Hrarat, L., et al. (2020) Comparison of the Effect of Ranibizumab and Aflibercept on Changes in Macular Choroidal Thickness in Patients Treated for Diabetic Macular Edema. Journal of Ophthalmology, 2020, Article ID: 5708354. https://doi.org/10.1155/2020/5708354
[35]
Moradian, S., Soheilian, M., Asadi, M., et al. (2023) Ziv-Aflibercept in Diabetic Macular Edema: Relation of Subfoveal Choroidal Thickness with Visual and Anatomical Outcomes. Journal of Ophthalmic & Vision Research, 18, 164-169. https://doi.org/10.18502/jovr.v18i2.13182
[36]
BAYER (2023) Aflibercept 8 Mg in Diabetic Macular Edema First to Achieve Sustained Vision Gains with up to 83% of Patients Extended to 16-24 Weeks at Two Years. https://www.bayer.com/media/en-us/aflibercept-8-mg-in-diabetic-macular-edema-first-to-achieve-sustained-vision-gains-with-up-to-83-of-patients-extended-to--16-24-weeks-at-two-years/
[37]
Wu, Z., Zhou, P., Li, X., et al. (2013) Structural Characterization of a Recombinant Fusion Protein by Instrumental Analysis and Molecular Modeling. PLOS ONE, 8, e57642. https://doi.org/10.1371/journal.pone.0057642
[38]
Liu, K., Wang, H., He, W., et al. (2022) Intravitreal Conbercept for Diabetic Macular Oedema: 2-Year Results from a Randomised Controlled Trial and Open-Label Extension Study. The British Journal of Ophthalmology, 106, 1436-1443. https://doi.org/10.1136/bjophthalmol-2020-318690
[39]
Sun, X., Zhang, J., Tian, J., et al. (2020) Comparison of the Efficacy and Safety of Intravitreal Conbercept with Intravitreal Ranibizumab for Treatment of Diabetic Macular Edema: A Meta-Analysis. Journal of Ophthalmology, 2020, Article ID: 5809081. https://doi.org/10.1155/2020/5809081
[40]
Cui, Z., Zhou, W., Chang, Q., et al. (2021) Cost-Effectiveness of Conbercept vs. Ranibizumab for Age-Related Macular Degeneration, Diabetic Macular Edema, and Pathological Myopia: Population-Based Cohort Study and Markov Model. Frontiers in Medicine, 8, Article 750132. https://doi.org/10.3389/fmed.2021.750132
[41]
Nicol, M., Ferro, Desideri, L., Vagge, A., et al. (2021) Faricimab: An Investigational Agent Targeting the Tie-2/Angiopoietin Pathway and VEGF-A for the Treatment of Retinal Diseases. Expert Opinion on Investigational Drugs, 30, 193-200. https://doi.org/10.1080/13543784.2021.1879791
[42]
Sahni, J., Patel, S.S., Dugel, P.U., et al. (2019) Simultaneous Inhibition of Angiopoietin-2 and Vascular Endothelial Growth Factor-A with Faricimab in Diabetic Macular Edema: BOULEVARD Phase 2 Randomized Trial. Ophthalmology, 126, 1155-1170. https://doi.org/10.1016/j.ophtha.2019.03.023
[43]
Wykoff, C.C., Abreu, F., Adamis, A.P., et al. (2022) Efficacy, Durability, and Safety of Intravitreal Faricimab with Extended Dosing up to Every 16 Weeks in Patients with Diabetic Macular Oedema (YOSEMITE and RHINE): Two Randomised, Double- Masked, Phase 3 Trials. Lancet, 399, 741-755. https://doi.org/10.1016/S0140-6736(22)00018-6
[44]
Takamura, Y., Yamada, Y., Morioka, M., et al. (2023) Turnover of Microaneurysms after Intravitreal Injections of Faricimab for Diabetic Macular Edema. Investigative Ophthalmology & Visual Science, 64, Article 31. https://doi.org/10.1167/iovs.64.13.31
[45]
Yamada, Y., Takamura, Y., Morioka, M., et al. (2021) Microaneurysm Density in Residual Oedema after Anti-Vascular Endothelial Growth Factor Therapy for Diabetic Macular Oedema. Acta Ophthalmologica, 99, e876-e883. https://doi.org/10.1111/aos.14706
[46]
Ohara, H., Harada, Y., Hiyama, T., et al. (2023) Faricimab for Diabetic Macular Edema in Patients Refractory to Ranibizumab or Aflibercept. Medicina, 59, Article 1125. https://doi.org/10.3390/medicina59061125
[47]
Romero-Aroca, P., Baget-Bernaldiz, M., Pareja-Rios, A., et al. (2016) Diabetic Macular Edema Pathophysiology: Vasogenic versus Inflammatory. Journal of Diabetes Research, 2016, Article ID: 2156273. https://doi.org/10.1155/2016/2156273
[48]
Noma, H., Yasuda, K. and Shimura, M. (2021) Involvement of Cytokines in the Pathogenesis of Diabetic Macular Edema. International Journal of Molecular Sciences, 22, Article 3427. https://doi.org/10.3390/ijms22073427
[49]
Zhang, J., Zhang, J., Zhang, C., et al. (2022) Diabetic Macular Edema: Current Understanding, Molecular Mechanisms and Therapeutic Implications. Cells, 11, Article 3362. https://doi.org/10.3390/cells11213362
[50]
Mesquida, M., Drawnel, F. and Fauser, S. (2019) The Role of Inflammation in Diabetic Eye Disease. Seminars in Immunopathology, 41, 427-445. https://doi.org/10.1007/s00281-019-00750-7
[51]
Lai, D., Wu, Y., Shao, C. and Qu, Q.H. (2023) The Role of Müller Cells in Diabetic Macular Edema. Investigative Ophthalmology & Visual Science, 64, Article 8. https://doi.org/10.1167/iovs.64.10.8
[52]
Zur, D., Iglicki, M. and Loewenstein, A. (2019) The Role of Steroids in the Management of Diabetic Macular Edema. Ophthalmic Research, 62, 231-236. https://doi.org/10.1159/000499540
[53]
Himasa, F.I., Singhal, M., Ojha, A., et al. (2022) Prospective for Diagnosis and Treatment of Diabetic Retinopathy. Current Pharmaceutical Design, 28, 560-569. https://doi.org/10.2174/1381612827666211115154907
[54]
Tang, L., Xu, G.T. and Zhang, J.F. (2023) Inflammation in Diabetic Retinopathy: Possible Roles in Pathogenesis and Potential Implications for Therapy. Neural Regeneration Research, 18, 976-982. https://doi.org/10.4103/1673-5374.355743
[55]
Imai, S., Otsuka, T., Naito, A., et al. (2017) Triamcinolone Acetonide Suppresses Inflammation and Facilitates Vascular Barrier Function in Human Retinal Microvascular Endothelial Cells. Current Neurovascular Research, 14, 232-241. https://doi.org/10.2174/1567202614666170619081929
[56]
Zajac-Pytrus, H.M., Kaczmarek, R., StronSka-Lipowicz, D., et al. (2017) The Effects and Safety of Intravitreal Triamcinolone Injections in the Treatment of Diabetic Macular Edema. Advances in Clinical and Experimental Medicine, 26, 45-49. https://doi.org/10.17219/acem/29849
[57]
Kato, F., Nozaki, M., Kato, A., et al. (2023) Retinal Microvascular Changes after Intravitreal Triamcinolone Acetonide in Diabetic Macular Edema. Journal of Clinical Medicine, 12, Article 3475. https://doi.org/10.3390/jcm12103475
[58]
Ibrahim, M.H., Salman, A.G., Said, A.M., et al. (2021) Efficacy of Posterior Sub- Tenon’s Capsule Injection Compared to Intravitreal Injection of Triamcinolone Acetonide for Treatment of Diabetic Macular Edema: A Systematic Review and Meta-Analysis. QJM: An International Journal of Medicine, 114, hcab109.019. https://doi.org/10.1093/qjmed/hcab109.019
[59]
Tomita, Y., Lee, D., Tsubota, K., et al. (2021) Updates on the Current Treatments for Diabetic Retinopathy and Possibility of Future Oral Therapy. Journal of Clinical Medicine, 10, Article 4666. https://doi.org/10.3390/jcm10204666
[60]
Chiu, C.Y., Huang, T.L., Chang, P.Y., et al. (2021) Combined Intravitreal Ranibizumab and Posterior Subtenon Triamcinolone Acetonide Injections for Patients with Diabetic Macular Edema Refractory to Intravitreal Ranibizumab Monotherapy. Taiwan Journal of Ophthalmology, 11, 251-258. https://doi.org/10.4103/tjo.tjo_31_20
[61]
Maturi, R.K., Glassman, A.R., Liu, D., et al. (2018) Effect of Adding Dexamethasone to Continued Ranibizumab Treatment in Patients with Persistent Diabetic Macular Edema: A DRCR Network Phase 2 Randomized Clinical Trial. JAMA Ophthalmology, 136, 29-38. https://doi.org/10.1001/jamaophthalmol.2017.4914
[62]
Maturi, R.K., Pollack, A., Uy, H.S., et al. (2016) Intraocular Pressure in Patients with Diabetic Macular Edema Treated with Dexamethasone Intravitreal Implant in the 3-Year Mead Study. Retina, 36, 1143-1152. https://doi.org/10.1097/IAE.0000000000001004
[63]
Zarranz-Ventura, J., Sala-Puigdollers, A., Velazquez-Villoria, D., et al. (2019) Long- Term Probability of Intraocular Pressure Elevation with the Intravitreal Dexamethasone Implant in the Real-World. PLOS ONE, 14, e0209997. https://doi.org/10.1371/journal.pone.0209997
[64]
Boyer, D.S., Yoon, Y.H., Belfort Jr., R., et al. (2014) Three-Year, Randomized, Sham- Controlled Trial of Dexamethasone Intravitreal Implant in Patients with Diabetic Macular Edema. Ophthalmology, 121, 1904-1914. https://doi.org/10.1016/j.ophtha.2014.04.024
[65]
Chi, S.C., Kang, Y.N. and Huang, Y.M. (2023) Efficacy and Safety Profile of Intravitreal Dexamethasone Implant versus Antivascular Endothelial Growth Factor Treatment in Diabetic Macular Edema: A Systematic Review and Meta-Analysis. Scientific Reports, 13, Article No. 7428. https://doi.org/10.1038/s41598-023-34673-z
[66]
Mitchell, P., Arnold, J., Fraser-Bell, S., et al. (2023) Dexamethasone Intravitreal Implant in Diabetic Macular Oedema Refractory to Anti-Vascular Endothelial Growth Factors: The AUSSIEDEX Study. BMJ Open Ophthalmology, 8, e001224. https://doi.org/10.1136/bmjophth-2022-001224
[67]
Nicol, M., Musetti, D., Marenco, M., et al. (2020) Real-Life Management of Diabetic Macular Edema with Dexamethasone Intravitreal Implant: A Retrospective Analysis of Long-Term Clinical Outcomes. Journal of Ophthalmology, 2020, Article ID: 4860743. https://doi.org/10.1155/2020/4860743
[68]
Rosenblatt, A., Udaondo, P., Cunha-Vaz, J., et al. (2020) A Collaborative Retrospective Study on the Efficacy and Safety of Intravitreal Dexamethasone Implant (Ozurdex) in Patients with Diabetic Macular Edema: The European DME Registry Study. Ophthalmology, 127, 377-393. https://doi.org/10.1016/j.ophtha.2019.10.005
[69]
Ruiz-Moreno, J.M., Adán, A., Lafuente, M., et al. (2023) Effectiveness and Safety of Fluocinolone Acetonide Intravitreal Implant in Diabetic Macular Edema Patients Considered Insufficiently Responsive to Available Therapies (REACT): A Prospective, Non-Randomized, and Multicenter Study. International Ophthalmology, 43, 4639-4649. https://doi.org/10.1007/s10792-023-02864-2
[70]
Veritti, D., Sarao, V., Diplotti, L., et al. (2017) Fluocinolone Acetonide for the Treatment of Diabetic Macular Edema. Expert Opinion on Pharmacotherapy, 18, 1507- 1516. https://doi.org/10.1080/14656566.2017.1363182
[71]
Campochiaro, P.A., Hafiz, G., Shah, S.M., et al. (2010) Sustained Ocular Delivery of Fluocinolone Acetonide by an Intravitreal Insert. Ophthalmology, 117, 1393-1399.E3. https://doi.org/10.1016/j.ophtha.2009.11.024
[72]
Eaton, A., Koh, S.S., Jimenez, J. and Riemann, C.D. (2019) The USER Study: A Chart Review of Patients Receiving A 0.2μG/Day Fluocinolone Acetonide Implant for Diabetic Macular Edema. Ophthalmology and Therapy, 8, 51-62. https://doi.org/10.1007/s40123-018-0155-5
[73]
Singer, M.A., Sheth, V., Mansour, S.E., et al. (2022) Three-Year Safety and Efficacy of the 0.19-Mg Fluocinolone Acetonide Intravitreal Implant for Diabetic Macular Edema: The PALADIN Study. Ophthalmology, 129, 605-613. https://doi.org/10.1016/j.ophtha.2022.01.015
[74]
Rousseau, N., Lebreton, O., Masse, H., et al. (2023) Fluocinolone Acetonide Implant Injected 1 Month after Dexamethasone Implant for Diabetic Macular Oedema: The ILUVI1MOIS Study. Ophthalmology and Therapy, 12, 2781-2792. https://doi.org/10.1007/s40123-023-00749-2
[75]
Leite, J., Ferreira, A., Castro, C., et al. (2023) Retinal Changes after Fluocinolone Acetonide Implant (ILUVIEN®) for DME: SD-OCT Imaging Assessment Using ESASO Classification. European Journal of Ophthalmology, 34, 233-244. https://doi.org/10.1177/11206721231183471
[76]
Kodjikian, L., Bandello, F., De Smet, M., et al. (2022) Fluocinolone Acetonide Implant in Diabetic Macular Edema: International Experts’ Panel Consensus Guidelines and Treatment Algorithm. European Journal of Ophthalmology, 32, 1890-1899. https://doi.org/10.1177/11206721221080288
[77]
Campochiaro, P.A., Brown, D.M., Pearson, A., et al. (2011) Long-Term Benefit of Sustained-Delivery Fluocinolone Acetonide Vitreous Inserts for Diabetic Macular Edema. Ophthalmology, 118, 626-635.E2. https://doi.org/10.1016/j.ophtha.2010.12.028
[78]
Chakravarthy, U., Taylor, S.R., Koch, F.H.J., et al. (2019) Changes in Intraocular Pressure after Intravitreal Fluocinolone Acetonide (ILUVIEN): Real-World Experience in Three European Countries. The British Journal of Ophthalmology, 103, 1072-1077. https://doi.org/10.1136/bjophthalmol-2018-312284
[79]
Nozaki, M., Ando, R., Kimura, T., et al. (2023) The Role of Laser Photocoagulation in Treating Diabetic Macular Edema in the Era of Intravitreal Drug Administration: A Descriptive Review. Medicina, 59, Article 1319. https://doi.org/10.3390/medicina59071319
[80]
Callanan, D.G., Gupta, S., Boyer, D.S., et al. (2013) Dexamethasone Intravitreal Implant in Combination with Laser Photocoagulation for the Treatment of Diffuse Diabetic Macular Edema. Ophthalmology, 120, 1843-1851. https://doi.org/10.1016/j.ophtha.2013.02.018
[81]
Nguyen, Q.D., Shah, S.M., Khwaja, A.A., et al. (2010) Two-Year Outcomes of the Ranibizumab for Edema of the mAcula in Diabetes (READ-2) Study. Ophthalmology, 117, 2146-2151. https://doi.org/10.1016/j.ophtha.2010.08.016
[82]
Sejournet, L., Kodjikian, L., Elbany, S., et al. (2023) Focal Photocoagulation as an Adjunctive Therapy to Reduce the Burden of Intravitreal Injections in Macula Edema Patients, the LyoMAC2 Study. Pharmaceutics, 15, Article 308. https://doi.org/10.3390/pharmaceutics15020308
[83]
Tamura, K., Yokoyama, T., Ebihara, N., et al. (2012) Histopathologic Analysis of the Internal Limiting Membrane Surgically Peeled from Eyes with Diffuse Diabetic Macular Edema. Japanese Journal of Ophthalmology, 56, 280-287. https://doi.org/10.1007/s10384-012-0130-y
[84]
Bonnin, S., Sandali, O., Bonnel, S., et al. (2015) Vitrectomy with Internal Limiting Membrane Peeling for Tractional and Nontractional Diabetic Macular Edema: Long-Term Results of a Comparative Study. Retina, 35, 921-928. https://doi.org/10.1097/IAE.0000000000000433
[85]
Ivastinovic, D., Haas, A., Weger, M., et al. (2021) Vitrectomy for Diabetic Macular Edema and the Relevance of External Limiting Membrane. BMC Ophthalmology, 21, Article No. 334. https://doi.org/10.1186/s12886-021-02095-y
[86]
Rinaldi, M., Dell’omo, R., Morescalchi, F., et al. (2018) ILM Peeling in Nontractional Diabetic Macular Edema: Review and Metanalysis. International Ophthalmology, 38, 2709-2714. https://doi.org/10.1007/s10792-017-0761-6
[87]
Ranno, S., Vujosevic, S., Mambretti, M., et al. (2023) Role of Vitrectomy in Nontractional Refractory Diabetic Macular Edema. Journal of Clinical Medicine, 12, Article 2297. https://doi.org/10.3390/jcm12062297
[88]
Guo, H., Li, W., Nie, Z., et al. (2023) Microinvasive Pars Plana Vitrectomy Combined with Internal Limiting Membrane Peeling versus Anti-VEGF Intravitreal Injection for Treatment-Naive Diabetic Macular Edema (VVV-DME Study): Study Protocol for A Randomized Controlled Trial. Trials, 24, Article No. 685. https://doi.org/10.1186/s13063-023-07735-w