全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biochemical Insights into Siderophore Esterases

DOI: 10.4236/jbm.2024.122005, PP. 60-69

Keywords: Siderophore, Siderophore Esterase, Hydrolysis, Enterobactin, Antibiotic

Full-Text   Cite this paper   Add to My Lib

Abstract:

Iron is an essential but excessively toxic nutrient. Although iron is rich in nature, the acquisition of iron is a challenge to life. Its solubility is very low because it is mostly in the form of oxidation or hydroxide. In order to overcome this, microorganisms have evolved a variety of iron absorption pathways, the most important of which is the siderophore-dependent iron absorption pathway. Both bacteria and fungi require specific siderophore esterases to encourage the release of iron within the cell. A deeper understanding of siderophore esterases is crucial for the development of new antibacterial and antifungal diagnostic and therapeutic approaches. There have been many recent studies on anti-infectives via siderophore antibiotic couplers in which siderophore esterases have also played an important role, and in this review, we provide an overview of several of the more common iron carriers as well as siderophore esterases in terms of structure as well as function.

References

[1]  Ahmed, E. and Holmstrom, S.J.M. (2014) Siderophores in Environmental Research: Roles and Applications. Microbial Biotechnology, 7, 196-208.
https://doi.org/10.1111/1751-7915.12117
[2]  De Serrano, L.O., Camper, A.K. and Richards, A.M. (2016) An Overview of Siderophores for Iron Acquisition in Microorganisms Living in the Extreme. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 29, 551-571.
https://doi.org/10.1007/s10534-016-9949-x
[3]  Davies, S.C., Fowler, T., Watson, J., et al. (2013) Annual Report of the Chief Medical Officer: Infection and the Rise of Antimicrobial Resistance. The Lancet, 381, 1606-1609.
https://doi.org/10.1016/S0140-6736(13)60604-2
[4]  World Health Organization (2014) Antimicrobial Resistance: Global Report on Surveillance. World Health Organization, Geneva.
https://iris.who.int/bitstream/handle/10665/112642/?sequence=1
[5]  Mancuso, G., Midiri, A., Gerace, E., et al. (2021) Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens, 10, Article 1310.
https://doi.org/10.3390/pathogens10101310
[6]  Baakza, A., Vala, A., Dave, B., et al. (2003) A Comparative Study of Siderophore Production by Fungi from Marine and Terrestrial Habitats. Journal of Experimental Marine Biology and Ecology, 311, 1-9.
https://doi.org/10.1016/j.jembe.2003.12.028
[7]  Oberegger, H., Schoeser, M., Zadra, I., et al. (2001) SREA Is Involved in Regulation of Siderophore Biosynthesis, Utilization and Uptake in Aspergillus nidulans. Molecular Microbiology, 41, 1077-1089.
https://doi.org/10.1046/j.1365-2958.2001.02586.x
[8]  Maumita, S., Subhasis, S., Biplab, S., et al. (2016) Microbial Siderophores and Their Potential Applications: A Review. Environmental Science and Pollution Research International, 23, 3984-3999.
https://doi.org/10.1007/s11356-015-4294-0
[9]  Wilson, R.B., Bogdan, R.A., Miyazawa, M., et al. (2016) Siderophores in Iron Metabolism: From Mechanism to Therapy Potential. Trends in Molecular Medicine, 22, 1077-1090.
https://doi.org/10.1016/j.molmed.2016.10.005
[10]  Paul, A. and Dubey, R. (2014) Characterization of Protein Involve in Nitrogen Fixation and Estimation of CO Factor. International Journal of Advanced Biotechnology and Research, 5, 582-597.
[11]  Winkelmann, G. (2002) Microbial Siderophore-Mediated Transport. Biochemical Society Transactions, 30, 691-696.
https://doi.org/10.1042/bst0300691
[12]  Fischbach, M.A., Lin, H.N., Liu, D.R. and Walsh, C.T. (2006) How Pathogenic Bacteria Evade Mammalian Sabotage in the Battle for Iron. Nature Chemical Biology, 2, 132-138.
https://doi.org/10.1038/nchembio771
[13]  Lin, H.N., Fischbach, M.A., Liu, D.R. and Walsh, C.T. (2005) In Vitro Characterization of Salmochelin and Enterobactin Trilactone Hydrolases IroD, IroE, and Fes. Journal of the American Chemical Society, 127, 11075-11084.
https://doi.org/10.1021/ja0522027
[14]  Goetz, D.H., Holmes, M.A., Borregaard, N., et al. (2002) The Neutrophil Lipocalin NGAL Is a Bacteriostatic Agent That Interferes with Siderophore-Mediated Iron Acquisition. Molecular Cell, 10, 1033-1043.
https://doi.org/10.1016/S1097-2765(02)00708-6
[15]  Caza, M., Garénaux, A., Lépine, F. and Dozois, C.M. (2015) Catecholate Siderophore Esterases Fes, IroD and IroE Are Required for Salmochelins Secretion Following Utilization, but Only IroD Contributes to Virulence of Extra-Intestinal Pathogenic E Scherichia Coli. Molecular microbiology, 97, 717-732.
https://doi.org/10.1111/mmi.13059
[16]  Bister, B., Bischoff, D., Nicholson, G.J., et al. (2004) The Structure of Salmochelins: C-Glucosylated Enterobactins of Salmonella Enterica§. Biometals, 17, 471-481.
https://doi.org/10.1023/B:BIOM.0000029432.69418.6a
[17]  Flo, T.H., Smith, K.D., Sato, S., et al. (2004) Lipocalin 2 Mediates an Innate Immune Response to Bacterial Infection by Sequestrating Iron. Nature, 432, 917-921.
https://doi.org/10.1038/nature03104
[18]  Baumler, A.J., Norris, T.L., Lasco, T., et al. (1998) IroN, A Novel Outer Membrane Siderophore Receptor Characteristic of Salmonella Enterica. Journal of Bacteriology, 180, 1446-1453.
https://doi.org/10.1128/JB.180.6.1446-1453.1998
[19]  Fischbach, M.A., Lin, H., Liu, D.R., et al. (2005) In Vitro Characterization of IroB, A Pathogen-Associated C-Glycosyltransferase. Proceedings of the National Academy of Sciences, 102, 571-576.
https://doi.org/10.1073/pnas.0408463102
[20]  Baumler, A.J., Tsolis, R.M., Van Der Velden, A.W.M., et al. (1996) Identification of a New Iron Regulated Locus of Salmonella Typhi. Gene, 183, 207-213.
https://doi.org/10.1016/S0378-1119(96)00560-4
[21]  Sprencel, C., Cao, Z., Qi, Z., et al. (2000) Binding of Ferric Enterobactin by the Escherichia coli Periplasmic Protein FepB. Journal of Bacteriology, 182, 5359-5364.
https://doi.org/10.1128/JB.182.19.5359-5364.2000
[22]  Chenault, S.S. and Earhart, C.F. (1991) Organization of Genes Encoding Membrane Proteins of the Escherichia coli Ferrienterobactin Permease. Molecular Microbiology, 5, 1405-1413.
https://doi.org/10.1111/j.1365-2958.1991.tb00787.x
[23]  Chenault, S.S. and Earhart, C.F. (1992) Identification of Hydrophobic Proteins FepD and FepG of the Escherichia coli Ferrienterobactin Permease. Microbiology, 138, 2167-2171.
https://doi.org/10.1099/00221287-138-10-2167
[24]  Stephens, D.L., Choe, M.D. and Earhart, C.F. (1995) Escherichia coli Periplasmic Protein FepB Binds Ferrienterobactin. Microbiology, 141, 1647-1654.
https://doi.org/10.1099/13500872-141-7-1647
[25]  Cooper, S.R., McArdle, J.V. and Raymond, K.N. (1978) Siderophore Electrochemistry: Relation to Intracellular Iron Release Mechanism. Proceedings of the National Academy of Sciences, 75, 3551-3554.
https://doi.org/10.1073/pnas.75.8.3551
[26]  Brickman, T.J. and McIntosh, M.A. (1992) Overexpression and Purification of Ferric Enterobactin Esterase from Escherichia coli. Demonstration of Enzymatic Hydrolysis of Enterobactin and Its Iron Complex. Journal of Biological Chemistry, 267, 12350-12355.
https://doi.org/10.1016/S0021-9258(19)49846-3
[27]  Perraud, Q., Moynié, L., Gasser, V., et al. (2018) A Key Role for the Periplasmic PfeE Esterase in Iron Acquisition via the Siderophore Enterobactin in Pseudomonas aeruginosa. ACS Chemical Biology, 13, 2603-2614.
https://doi.org/10.1021/acschembio.8b00543
[28]  Zeng, X., Mo, Y., Xu, F., et al. (2013) Identification and Characterization of a Periplasmic Trilactone Esterase, Cee, Revealed Unique Features of Ferric Enterobactin Acquisition in Campylobacter. Molecular Microbiology, 87, 594-608.
https://doi.org/10.1111/mmi.12118
[29]  Haas, H. (2014) Fungal Siderophore Metabolism with a Focus on Aspergillus fumigatus. Natural Product Reports, 31, 1266-1276.
https://doi.org/10.1039/C4NP00071D
[30]  Schrettl, M., Bignell, E., Kragl, C., et al. (2007) Distinct Roles for Intra- and Extracellular Siderophores during Aspergillus fumigatus Infection. PLOS Pathogens, 3, e128.
https://doi.org/10.1371/journal.ppat.0030128
[31]  Wallner, A., Blatzer, M., Schrettl, M., et al. (2009) Ferricrocin, A Siderophore Involved in Intra- and Transcellular Iron Distribution in Aspergillus fumigatus. Applied and Environmental Microbiology, 75, 4194-4196.
https://doi.org/10.1128/AEM.00479-09
[32]  Haas, H., Eisendle, M. and Turgeon, B.G. (2008) Siderophores in Fungal Physiology and Virulence. Annual Review of Phytopathology, 46, 149-187.
https://doi.org/10.1146/annurev.phyto.45.062806.094338
[33]  Schrettl, M., Bignell, E., Kragl, C., et al. (2004) Siderophore Biosynthesis but Not Reductive Iron Assimilation Is Essential for Aspergillus fumigatus Virulence. The Journal of Experimental Medicine, 200, 1213-1219.
https://doi.org/10.1084/jem.20041242
[34]  Gsaller, F., Eisendle, M., Lechner, B.E., et al. (2012) The Interplay between Vacuolar and Siderophore-Mediated Iron Storage in Aspergillus fumigatus. Metallomics, 4, 1262-1270.
https://doi.org/10.1039/c2mt20179h
[35]  Ecker, F., Haas, H., Groll, M., et al. (2018) Iron Scavenging in Aspergillus Species: Structural and Biochemical Insights into Fungal Siderophore Esterases. Angewandte Chemie International Edition, 57, 14624-14629.
https://doi.org/10.1002/anie.201807093
[36]  Kragl, C., Schrettl, M., Abt, B., et al. (2007) EstB-Mediated Hydrolysis of the Siderophore Triacetylfusarinine C Optimizes Iron Uptake of Aspergillus fumigatus. Eukaryotic Cell, 6, 1278-1285.
https://doi.org/10.1128/EC.00066-07
[37]  Gründlinger, M., Gsaller, F., Schrettl, M., et al. (2013) Aspergillus fumigatus SidJ Mediates Intracellular Siderophore Hydrolysis. Applied and Environmental Microbiology, 79, 7534-7536.
https://doi.org/10.1128/AEM.01285-13
[38]  Chifman, J., Laubenbacher, R. and Torti, S.V. (2014) A Systems Biology Approach to Iron Metabolism. In: Corey, S.J., Kimmel, M. and Leonard, J.N., Eds., A Systems Biology Approach to Blood, Springer, Berlin, 201-225.
https://doi.org/10.1007/978-1-4939-2095-2_10
[39]  Liang, D., Minikes, A.M. and Jiang, X. (2022) Ferroptosis at the Intersection of Lipid Metabolism and Cellular Signaling. Molecular Cell, 82, 2215-2227.
https://doi.org/10.1016/j.molcel.2022.03.022
[40]  Zheng, J. and Conrad, M. (2020) The Metabolic Underpinnings of Ferroptosis. Cell Metabolism, 32, 920-937.
https://doi.org/10.1016/j.cmet.2020.10.011
[41]  Mislin, G.L.A. and Schalk, I.J. (2014) Siderophore-Dependent Iron Uptake Systems as Gates for Antibiotic Trojan Horse Strategies against Pseudomonas aeruginosa. Metallomics, 6, 408-420.
https://doi.org/10.1039/C3MT00359K
[42]  Tillotson, G.S. (2016) Trojan Horse Antibiotics—A Novel Way to Circumvent Gram-Negative Bacterial Resistance? Infectious Diseases: Research and Treatment, 9.
https://doi.org/10.4137/IDRT.S31567
[43]  Klahn, P. and Bronstrup, M. (2017) Bifunctional Antimicrobial Conjugates and Hybrid Antimicrobials. Natural Product Reports, 34, 832-885.
https://doi.org/10.1039/C7NP00006E
[44]  Sanderson, T.J., Black, C.M., Southwell, J.W., et al. (2020) A Salmochelin S4-Inspired Ciprofloxacin Trojan Horse Conjugate. ACS Infectious Diseases, 6, 2532-2541.
https://doi.org/10.1021/acsinfecdis.0c00568
[45]  Neumann, W., Sassone-Corsi, M., Raffatellu, M., et al. (2018) Esterase-Catalyzed Siderophore Hydrolysis Activates an Enterobactin-Ciprofloxacin Conjugate and Confers Targeted Antibacterial Activity. Journal of the American Chemical Society, 140, 5193-5201.
https://doi.org/10.1021/jacs.8b01042

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133