Formulation of Geopolymer Cements from Two Clays Containing Kaolinite and Muscovite: Effect of Temperature on the Physicomechanical Properties of the Products
The paper talks about the elaboration of geopolymer with two types of kaolinite clays containing muscovite. The kaolinite materials were first calcined at different temperatures, and mixed with an activator solution, called liquid precursor, at a different solid/liquid mass ratio depending on their normal consistency to produce geopolymer binders. Results show that the geopolymer products obtained from the different clays have good physichomechanical properties: their open porosity and their water absorption rate decrease while their compressive strength and their apparent density increase with the increase in calcination temperature of the clays. The density of GABD binders varies between 2.92 and 2.47 g/cm3 and that of GARD binders between 1.86 and 2.16 g/cm3. Specimens in the GABD series have the best mechanical performance, ranging from 14.43 to 31.37 MPa, while those in the GARD series oscillate between 6.18 and 11.56 MPa. These properties make kaolinite materials from this region suitable for use as construction materials for adequate waterproof structures.
References
[1]
Van Oss, H.G. and Padovani, A.C. (2002) Cement and the Environment: Part I: Chemistry and Technology. Journal of Industrial Ecology, 6, 89-105. https://doi.org/10.1162/108819802320971650
[2]
Özen, S. and Alam, B. (2018) Compressive Strength and Microstructural Characteristics of Natural Zeolite-Based Geopolymer. Cement and Concrete Composites, 62, 64-71.
[3]
Dollé, J.B., Agabriel, J., Peyraud, J.L., Faverdin, P., Manneville, V., Raison, C. and Le Gall, A. (2011) Les gaz à effet de serre en élevage bovin: Evaluation et leviers d’action. INRAE Productions Animales, 24, 415-432. https://doi.org/10.20870/productions-animales.2011.24.5.3275
[4]
Favier, A. (2013) Mécanisme de prise et rhéologie de liants géopolymères modèles. Master’s Thesis, Université Paris-Est, Créteil.
[5]
Bouchenafa, O. (2019) Mécanosynthèse et matériaux de construction: Optimisation et application pour la clinkérisation et la géopolymérisation. Master’s Thesis, Université Paris-Est, Créteil.
[6]
Orsini, S. (2020) Modification des paramètres biotiques et abiotiques du Rizzanes: Impact de l’aménagement hydroélectrique et/ou des conséquence de changement climatique. Master’s Thesis, Université de Corse, Corte.
[7]
Davidovits, J. (1994) Global Warming Impact on the Cement and Aggregates Industries. World Resource Review, 6, 263-278.
[8]
Davidovits, J. (1991) Geopolymers: Inorganic Polymeric New Materials. Journal of Thermal Analysis and Calorimetry, 37, 1633-1656. https://doi.org/10.1007/BF01912193
[9]
Cheng, T.W. and Chiu, J.P. (2003) Fire-Resistant Geopolymer Produced by Granulated Blast Furnace Slag. Minerals Engineering, 16, 205-210. https://doi.org/10.1016/S0892-6875(03)00008-6
[10]
Bakharev, T. (2005) Resistance of Geopolymer Materials to Acid Attack. Cement and Concrete Research, 35, 658-670. https://doi.org/10.1016/j.cemconres.2004.06.005
[11]
Longhi, M.A., Rodriguez, E.D., Walkley, B., Zhang, Z. and Kirchheim, A.P. (2020) Metakaolin-Based Geopolymers: Relation between Formulation, Physicochemical Properties and Efflorescence Formation. Composites Part B: Engineering, 182, Article ID: 107671. https://doi.org/10.1016/j.compositesb.2019.107671
[12]
Balde, M.Y., Njiomou Djangang, C., Bah, A., Blanchart, P. and Njopwouo, D. (2021) Effect of Physicochemical Characteristics on the Use of Clays from Kindia (Guinea) in Ceramic Compositions. International Journal of Applied Ceramic Technology, 18, 1033-1042. https://doi.org/10.1111/ijac.13669
[13]
Balde, M.Y., Djangang, C.N., Diallo, R.B., Blanchart, P. and Njopwouo, D. (2021) Physicochemical Characterisation for Potential Uses as Industrial Mineral of Bauxite from Debele, Guinea. Journal of Materials Science and Chemical Engineering, 9, 9-22. https://doi.org/10.4236/msce.2021.93002
[14]
ISO (2018) Standard ISO 5017:2013: Dense Shaped Refractory Products—Determination of Bulk Density, Apparent Porosity and True Porosity. https://www.iso.org/standard/56179.html
[15]
Pougnong, T.E., Belibi Belibi, P.D., Baenla, J., Thamer, A., Tiffo, E. and Elimbi, A. (2021) Effects of Chemical Composition of Amorphous Phase on the Reactivity of Phosphoric Acid Activation of Volcanic Ashes. Journal of Non-Crystalline Solids, 575, Article ID: 121213. https://doi.org/10.1016/j.jnoncrysol.2021.121213
[16]
Lecomte-Nana, G.L. (2004) Transformations thermiques, organisation structurale et frittage des composés kaolinite-muscovite. Master’s Thesis, Université de Limoges, Limoges.
[17]
Lecomte-Nana, G.L., Bonnet, J.P. and Blanchart, P. (2011) Investigation of the Sintering Mechanisms of Kaolin-Muscovite. Applied Clay Science, 51, 445-451. https://doi.org/10.1016/j.clay.2011.01.007
[18]
Tchakouté, H.K. (2013) Elaboration et caractérisation de ciments géopolymères à base de scories volcaniques. Master’s Thesis, Université de Yaoundé I, Yaoundé.
[19]
Weng, L., Sagoe-Crentsil, K., Brown, T. and Song, S. (2005) Effects of Aluminates on the Formation of Geopolymers. Materials Science and Engineering: B, 117, 163-168. https://doi.org/10.1016/j.mseb.2004.11.008
[20]
Elimbi, A., Tchakoute, H.K. and Njopowouo, D. (2011) Effets of Calcination Temperature of Kaolinite Clays on the Properties of Geopolymer Cements. Construction and Building Materials, 52, 2805-2812. https://doi.org/10.1016/j.conbuildmat.2010.12.055
[21]
Tchakoute, K.H., Mbey, J.A., Elimbi, A., Diffo Kenne, B.B. and Njopwouo, D. (2013) Synthesis of Volcanic Ash-Based Geopolymer Mortars by Volcanic by Fusion Method: Effect of Adding Metakaolin to Fused Volcanic Ash. Ceramics International, 39, 1613-1621. https://doi.org/10.1016/j.ceramint.2012.08.003
[22]
Lecomte, G.L., Bonnet, J.P. and Blanchart, P. (2007) A Study of the Influence of Muscovite on the Thermal Transformations of Kaolinite from Room Temperature up to 1100˚C. Journal of Materials Science, 42, 8745-8752. https://doi.org/10.1007/s10853-006-0192-7
[23]
Djangang, C.N., Mbey, J.A., Ekani, C.J., Tiam, S.T., Blanchart, P. and Njopwouo, D. (2020) Improved Microstructure and Free Efflorescence Geopolymer Binders. SN Applied Sciences, 2, Article No. 2167. https://doi.org/10.1007/s42452-020-03959-6
[24]
Jouenne, C.A. (2001) Traité de céramiques et matériaux minéraux. Septima, Paris.
[25]
Djangang, C.N. (2007) Argiles kaolinitiques de Mayouom et de Mvan: Caractérisation et utilisation dans l’élaboration des matériaux réfractaires. Master’s Thesis, Université de Yaoundé I, Yaoundé.
[26]
Yang, T., Chou, C. and Chien, C. (2012) The Effects of Foaming Agents and Modifiers on a Foamed-Geopolymer. The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM’ 12), Seoul, 26-30 August 2012, 905-914.
[27]
Tchadjie, N.L. (2012) Comportement thermique des géopolymères obtenus à partir d’une argile kaolinite. Ph.D. Thesis, Université de Yaoundé I, Yaoundé.
[28]
Mabah, D.E.T., Tchakouté, H.K., Rüscher, C.H., Kamseu, E., Elimbi, A. and Leonelli, C. (2019) Design of Low Cost Semi-Crystalline Calcium Silicate from Biomass for the Improvement of the Mechanical and Microstructural Properties of Metakaolin-Based Geopolymer Cements. Materials Chemistry and Physics, 223, 98-108. https://doi.org/10.1016/j.matchemphys.2018.10.061
[29]
Balde, M.Y. (2023) Physicochemical Characterisation of Aluminosilicates (Clays and Bauxite) from Kindia, Guinea: Application in the Formulation of Hydraulic Mortars and Ceramic Compositions. Revue Francophone. https://www.researchgate.net/publication/374550472_Caracterisation_physicochimique_des_aluminosilicates_argiles_et_bauxite_de_Kindia_Guinee_Application_dans_la_formulation_des_mortiers_hydrauliques_et_des_compositions_ceramique
[30]
Yin, S., Yan, Z., Chen, X. and Wang, L. (2022) Effect of Fly-Ash as Fine Aggregate on the Workability and Mechanical Properties of Cemented Paste Backfill. Case Studies in Construction Materials, 16, e01039. https://doi.org/10.1016/j.cscm.2022.e01039
[31]
Huang, Y., Huo, Z., Ma, G., Zhang, L., Wang, F. and Zhang, J. (2023) Multi-Objective Optimization of Fly Ash-Slag Based Geopolymer Considering Strength, Cost and CO2 Emission: A New Framework Based on Tree-Based Ensemble Models and NSGA-II. Journal of Building Engineering, 68, Article ID: 106070. https://doi.org/10.1016/j.jobe.2023.106070
[32]
Pratap, B., Sharma, S., Kumari, P. and Raj, S. (2023) Mechanical Properties Prediction of Metakaolin and Fly Ash-Based Geopolymer Concrete Using SVR. Journal of Building Pathology and Rehabilitation, 9, Article No. 1. https://doi.org/10.1007/s41024-023-00360-9