全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

(ρ, τ, σ)-Derivations of Dendriform Algebras

DOI: 10.4236/am.2023.1412048, PP. 839-846

Keywords: Dendriform Algebras, Derivations, Generalized Derivations

Full-Text   Cite this paper   Add to My Lib

Abstract:

We introduce and investigate the properties of a generalization of the derivation of dendriform algebras. We specify all possible parameter values for the generalized derivations, which depend on parameters. We provide all generalized derivations for complex low-dimensional dendriform algebras.

References

[1]  Braser, M. (1991) On the Distance of the Composition of Two Generalized Derivations. Glasgow Mathematical Journal, 33, 89-93.
https://doi.org/10.1017/S0017089500008077
[2]  Loday, J.-L., Frabetti, A., Chapoton, F. and Goichot, F. (2001) Dialgebras and Related Operads. Springer Berlin, Heidelberg.
https://doi.org/10.1007/b80864
[3]  Zhang, Y.Y., Gao, X. and Manchon, D. (2020) Free (tri)dendriform Family Algebras. Journal of Algebra, 547, 456-493.
https://doi.org/10.1016/j.jalgebra.2019.11.027
[4]  Gubarev, V.Y. and Kolesnikov, P.S. (2013) Embedding of Dendriform Algebras into Rota-Baxter Algebras. Central European Journal of Mathematics, 11, 226-245.
https://doi.org/10.2478/s11533-012-0138-z
[5]  Das, Apurba. (2022) Cohomology and Deformations of Dendriform Algebras, and Dend-Algebras. Communications in Algebra, 50, 1544-1567.
https://doi.org/10.1080/00927872.2021.1985130
[6]  Fan, G.Z., Hong, Y.Y. and Su, Y.C. (2019) Generalized Conformal Derivations of Lie Conformal Algebras. Journal of Algebra and Its Applications, 18, Article 1950175.
https://doi.org/10.1142/S0219498819501755
[7]  Leger, G.F. and Luks, E.M. (2000) Generalized Derivations of Lie Algebras, Journal of Algebra, 228, 165-203.
https://doi.org/10.1006/jabr.1999.8250
[8]  Hoechsmann, K. (1963) Simple Algebras and Derivations. Transactions of the American Mathematical Society, 108, 1-12.
https://doi.org/10.1090/S0002-9947-1963-0152548-7
[9]  Lin, L. and Zhang, Y. (2010) F[x, y] as a Dialgebra and a Leibniz Algebra. Communications in Algebra, 9, 3417-3447.
https://doi.org/10.1080/00927870903164677
[10]  Novotný, P. and Hrivnák, J. (2008) On (α, β, γ) -Derivation of Lie Algebras and Corresponding Invariant Functions. Journal of Geometry and Physics, 58, 208-217.
https://doi.org/10.1016/j.geomphys.2007.10.005
[11]  Hartwig, J.T., Larsson, D. and Silvestrov, S.D. (2006) Deformation of Lie Algebras Using σ-Derivations. Journal of Algebra, 295, 314-361.
https://doi.org/10.1016/j.jalgebra.2005.07.036
[12]  Hrivnák, J. (2007) Invariants of Lie Algebras. Ph.D. Thesis, Czech Technical University, Prague.
[13]  Alkhezi, Y.A. and Fiidow, M.A. (2019) On Derivations of Finite Dimensional Dendriform Algebras. Pure Mathematical Sciences, 8, 17-24.
https://doi.org/10.12988/pms.2019.91111
[14]  Rikhsiboev, I.M., Rakhimov, I.S. and Basri, W. (2010) The Description of Dendriform Algebra Structures on Two-Dimensional Complex Space. Journal of Algebra Number Theory: Advances and Applications, 4, 1-18.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133