全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于拓扑结构研究佛罗里达州水晶河食物网的复杂性
Complexity Analysis of the Crystal River Food Web in Florida Based on Topological Structure

DOI: 10.12677/SA.2023.126155, PP. 1514-1521

Keywords: 水晶河,食物网复杂性,食物网结构,拓扑网络
Crystal River
, Food Web Complexity, Food Web Structure, Topology Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

探究食物网的结构和复杂性,可深入了解其功能、营养动力学以及能量转化过程。本文水晶河食物网数据由北卡罗来纳州大学威明顿分校的Stuart Borrett教授整理并提供,基于11个拓扑网络指数对以上数据进行分析,通过建立水晶河的拓扑网络,研究了该地区食物网的结构和复杂性。在分析水晶河食物网时,我们得出了以下结果:该食物网的物种数为19,连接数为65,每个物种的相互作用数量为3.42,连接性为0.18。顶级物种、中间物种和基础物种的比例分别为47.4%、42.1%和10.5%。食物网的杂食性指数为36.8%,连接复杂性指数为7.22,特征路径长度为2.111,聚类系数为0.325。根据对物种间相互作用数量和连接性的研究发现,水晶河食物网的L/S的数值处于非正常范围内、L/S2的数值均处于正常范围内,由此判定水晶河食物网的复杂性处于非正常的状态。杂食性物种数量比例、特征路径长度和聚集系数等指标均表明水晶河食物网的不稳定性。对水晶河食物网结构和复杂性的研究有助于深化对该生态系统的认知,也为深入探究水晶河食物网功能和科学管理渔业资源提供理论支持。
Exploring the structure and complexity of food webs provides an in-depth understanding of their functionality, nutritional dynamics, and energy transformation processes. In this study, the Crystal River food web data, compiled and provided by Professor Stuart Borrett from the University of North Carolina Wilmington, were analyzed using 11 topological network indices. By establishing the topological network of Crystal River, the structure and complexity of the food web in this region were studied. When analyzing the Crystal River food web, the following results were obtained: The number of species in the food web was 19, with 65 connections, an average interaction per species of 3.42, and a connectance of 0.18. The proportions of top species, intermediate species, and basal species were 47.4%, 42.1%, and 10.5%, respectively. The omnivory index of the food web was 36.8%, the connectance complexity index was 7.22, the characteristic path length was 2.111, and the clustering coefficient was 0.325. Based on the analysis of the number of interactions and con-nectance between species, it was determined that the value of L/S in the Crystal River food web was in the abnormal range, and the value of L/S2 was in the normal range, indicating the complexity of the Crystal River food web was in the abnormal state. Indicators such as the proportion of omniv-orous species, characteristic path length, and clustering coefficient all suggest the instability of the Crystal River food web. The study of the structure and complexity of the Crystal River food web con-tributes to a deeper understanding of this ecosystem and provides theoretical support for further investigating its functionality and scientifically managing fisheries resources.

References

[1]  Brose, U. (2010) Improving Nature Conservancy Strategies by Ecological Network Theory. Basic & Applied Ecology, 11, 1-5.
https://doi.org/10.1016/j.baae.2009.11.003
[2]  刘吉峰, 丁裕国, 江志红. 全球变暖加剧对极端气候概率影响的初步探讨[J]. 高原气象, 2007, 26(4): 837-842.
[3]  Cox, P.M., Betts, R., Jones, C.D., et al. (2000) Acceleration of Global Warming Due to Car-bon-Cycle Feedbacks in a Coupled Model. Nature, 408, 184-187.
https://doi.org/10.1038/35041539
[4]  陈清华, 彭海君. 海洋酸化的生态危害研究进展[J]. 科技导报, 2009, 27(19): 110-113.
[5]  张新民, 柴发合, 王淑兰, 等. 中国酸雨研究现状[J]. 环境科学研究, 2010, 23(5): 527-532.
[6]  Rooney, N. and Mccann, K.S. (2012) Integrating Food Web Diversity, Structure and Stabil-ity. Trends in Ecology & Evolution, 27, 40-46.
https://doi.org/10.1016/j.tree.2011.09.001
[7]  Chen, X.J. (2012) Simulating Hy-drodynamics in a Spring-Fed Estuary Using a Three-Dimensional Unstructured Cartesian Grid Model. Estuarine Coastal and Shelf Science, 115, 246-259.
https://doi.org/10.1016/j.ecss.2012.09.007
[8]  Borrett, S.R. (2013) Throughflow Centrality Is a Global Indicator of the Functional Importance of Species in Ecosystems. Ecological Indicators, 32, 182-196.
https://doi.org/10.1016/j.ecolind.2013.03.014
[9]  Borrett, S.R. and Freeze, M.A. (2011) Reconnecting Environs to Their Envi-ronment. Ecological Modelling, 222, 2393-2403.
https://doi.org/10.1016/j.ecolmodel.2010.10.015
[10]  Ulanowicz, R.E. (1986) Growth and Development: Ecosystems Phenomenology. Springer-Verlag, New York.
[11]  程济生, 朱金声. 黄海主要经济无脊椎动物摄食特征及其营养层次的研究[J]. 海洋学报, 1997, 19(6): 102-108.
[12]  Marina, T.I., Salinas, V., Cordone, G., et al. (2018) The Food Web of Potter Cove (Antarctica): Complexity, Structure and Function. Estuarine, Coastal and Shelf Science, 200, 141-151.
https://doi.org/10.1016/j.ecss.2017.10.015
[13]  Briand, F. (1985) Structural Singularities of Freshwater Food Webs. Verhand-lungen des Internationalen Verein Limnologie, 22, 3356-3364.
https://doi.org/10.1080/03680770.1983.11897889
[14]  Watts, D.J. and Strogatz, S.H. (1998) Collective Dynamics of “Small-World” Networks. Nature, 393, 440-442.
https://doi.org/10.1038/30918
[15]  Albert, R. and Barabási, A.L. (2002) Statistical Mechanics of Complex Networks. Reviews of Modern Physics, 74, 47-97.
https://doi.org/10.1103/RevModPhys.74.47
[16]  Montoya, J.M. and Solé, R.V. (2002) Small World Patterns in Food Webs. Journal of Theoretical Biology, 214, 405-412.
https://doi.org/10.1006/jtbi.2001.2460
[17]  徐从军, 刘阳, 程远, 等. 基于拓扑网络研究海州湾食物网结构与复杂性[J]. 海洋学报, 2020, 42(4): 47-54.
[18]  Opitz, S. (1996) Trophic Interactions in Caribbean Coral Reefs. International Center for Living Aquatic Resources, Makati.
[19]  De Santana, C.N., Rozenfeld, A.F., Marquet, P.A., et al. (2013) Topological Properties of Polar Food Webs. Marine Ecology Progress Series, 474, 15-26.
https://doi.org/10.3354/meps10073
[20]  Bodini, A., Bellingeri, M., Allesina, S., et al. (2009) Using Food Web Dominator Trees to Catch Secondary Extinctions in Action. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1725-1731.
https://doi.org/10.1098/rstb.2008.0278
[21]  Link, J. (2002) Does Food Web Theory Work for Marine Ecosystems? Marine Ecology Progress, 230, 1-9.
https://doi.org/10.3354/meps230001
[22]  Polis, G.A. (1991) Complex Trophic Interactions in Deserts: An Empirical Critique of Food-Web Theory. The American Naturalist, 138, 123-155.
https://doi.org/10.1086/285208
[23]  Closs, G.P. and Lake, P.S. (1994) Spatial and Temporal Variation in the Structure of an Intermittent-Stream Food Web. Ecological Monographs, 64, 1-21.
https://doi.org/10.2307/2937053
[24]  Martinez, N.D. (1991) Artifacts or Attributes? Effects of Resolution on the Little Rock Lake Food Web. Ecological Monographs, 61, 367-392.
https://doi.org/10.2307/2937047
[25]  Montoya, J.M. and Solé, R.V. (2003) Topological Properties of Food Webs: From Real Data to Community Assembly Models. Oikos, 102, 614-622.
https://doi.org/10.1034/j.1600-0706.2003.12031.x
[26]  Norkko, A., Thrush, S.F., Cummings, V.J., et al. (2007) Trophic Struc-ture of Coastal Antarctic Food Webs Associated with Changes in Sea Ice and Food Supply. Ecology, 88, 2810-2820.
https://doi.org/10.1890/06-1396.1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133