全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于语义分割的冷库排管霜层厚度测量研究
Research on Measurement of Frost Layer Thickness in Cold Storage Pipe Arrays Based on Semantic Segmentation

DOI: 10.12677/MOS.2023.126493, PP. 5430-5441

Keywords: 霜层厚度测量,语义分割算法,Canny边缘检测,霍夫变换
Frost Layer Thickness Measurement
, Semantic Segmentation Algorithm, Canny Edge Detection, Hough Transform

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对冷库霜层厚度监测过程中常处于低光照、多障碍的环境,严重影响图像质量与霜层厚度测量精度的问题,提出了一种基于语义分割的冷库排管霜层厚度测量方法。首先将语义分割算法引入图像处理中对采集所得的低光照霜层图像进行像素分割,以消除低光照环境对图像质量的影响;其次对排管霜层的结霜区域进行Canny边缘检测,并结合霍夫直线检测算法,实现对霜层区域的提取;最后利用冷库排管的实际尺寸与结霜区域像素宽度比例关系确定霜层厚度。实验结果表明,文中所提方法能够有效计算低光照、多障碍环境下的冷库排管霜层厚度,计算所得的霜层厚度相对误差仅为1.88 mm,对冷库排管霜层监测工作具有一定的参考价值。
A semantic segmentation based frost thickness measurement method for cold storage pipes is pro-posed to address the problem of low light and multiple obstacles in the process of monitoring frost thickness, which seriously affects image quality and frost thickness measurement accuracy. Firstly, the semantic segmentation algorithm is introduced into image processing to perform pixel seg-mentation on the collected low light frost layer images, in order to eliminate the impact of low light environment on image quality; Secondly, Canny edge detection is performed on the frosted area of the exhaust pipe frost layer, and combined with the Hough line detection algorithm, the frost layer area is extracted; Finally, the frost layer thickness is determined based on the proportional rela-tionship between the actual size of the cold storage duct and the pixel width of the frosting area. The experimental results show that the proposed method can effectively calculate the frost layer thick-ness of cold storage pipes in low light and multi-obstacle environments. The relative error of the calculated frost layer thickness is only 1.88 mm, which has certain reference value for cold storage pipe frost layer monitoring work.

References

[1]  黄韬, 唐兰, 陈海, 等. 空气源热泵分段除霜性能研究[J]. 制冷学报, 2023, 44(4): 112-119.
[2]  许刚, 苏蓓蓓. 复杂背景下输电线覆冰厚度自动检测方法[J]. 计算机工程与设计, 2020, 41(11): 3112-3117.
[3]  贺晓倩, 吴先用, 魏业文. 复杂背景中输电线路不均匀覆冰厚度测量方法[J]. 电力科学与技术学报, 2023, 38(3): 224-229.
[4]  肖文, 高宏力, 鲁彩江. 单目视觉测量电力线覆冰厚度方法研究[J]. 机械设计与制造, 2021, 366(8): 1-4.
[5]  Moradkhani, M.A., Hosseini, S.H., Lei, S.W. and Song, M.J. (2022) Intelligent Computing Approaches to Forecast Thickness and Surface Roughness of Frost Layer on Horizontal Plates under Natural Convection. Applied Thermal Engineering, 217, 119258.
https://doi.org/10.1016/j.applthermaleng.2022.119258
[6]  Andrade-Ambriz, Y.A., Ledesma, S., Almanza-Ojeda, D.-L. and Belman-Flores, J.M. (2023) Accurate Classification of Frost Thickness Using Visual Information in a Domestic Refrigera-tor. International Journal of Refrigeration, 145, 256-263.
https://doi.org/10.1016/j.ijrefrig.2022.08.019
[7]  Weng, B.J., Gao, W., Zheng, W.C. and Yang, G.J. (2021) Newly Designed Identifying method for Ice Thickness on High‐Voltage Trans-mission Lines via Machine Vision. High Voltage, 6, 904-922.
https://doi.org/10.1049/hve2.12086
[8]  Lee, W.-J. and Kwon, O.K. (2021) Image Processing for frost Thickness Measurement in Fin-and-Tube Heat Exchangers. Thermal Science and Engineering Progress, 24, 100937.
https://doi.org/10.1016/J.TSEP.2021.100937
[9]  乌兰, 苏力德, 贾立国, 秦永林, 樊明寿. 基于改进DeepLabv3+网络的马铃薯根系图像分割方法[J]. 农业工程学报, 2023, 39(3): 134-144.
[10]  Yonis, G. (2023) Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Tech-nique. Sustainability, 15, 1906.
https://doi.org/10.3390/su15031906
[11]  Lai, Z.Y., Chen, R.H., Jia, J.L. and Qian, Y.R. (2020) Real-Time Micro-Expression Recognition Based on ResNet and Atrous Convolutions. Journal of Ambient Intelligence and Humanized Computing.
https://doi.org/10.1007/s12652-020-01779-5
[12]  Martinel, N., Foresti, G.L. and Micheloni, C. (2020) Deep Pyramidal Pooling with Attention for Person Re-Identifica- tion. IEEE Transactions on Image Processing, 29, 7306-7316.
https://doi.org/10.1109/TIP.2020.3000904

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133