全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

航天器相对位姿一体化的自调整控制方法
Self-Adjusting Control Method of Integrated Relative Position and Attitude of Spacecraft

DOI: 10.12677/MOS.2023.126480, PP. 5284-5293

Keywords: 姿轨耦合,自调整函数,航天器追踪,改进型PD控制
Attitude and Rail Coupling
, Self-Adjusting Function, Spacecraft Tracking, Improved PD Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

航天器间姿态与轨迹的耦合效果对于航天器在太空中的交会有着较大的影响。针对传统航天器在追踪问题上无法统一描述姿轨耦合与减小控制力、控制力矩饱和的问题,本文提出了一种自调整函数的改进型PD控制方法,更好地实现了航天器姿态与轨道的一体化控制,确保了航天器在追踪条件下的自身姿轨与追踪目标姿轨的同步性。本文利用Lyapunov函数对姿轨耦合系统进行稳定性分析,实验结果证明了本文所提方法在系统稳定性和饱和性上具有较好的控制效果。
The coupling effect of attitude and trajectory between spacecraft has a great influence on spacecraft rendezvous in space. Aiming at the problems that traditional spacecraft cannot uniformly describe the coupling of attitude and orbit, reduce the control force and saturated control moment, this pa-per proposes an improved PD control method with self-adjusting function, which better realizes the integrated control of spacecraft attitude and orbit, and ensures the synchronization of spacecraft self-attitude orbit and target attitude orbit under tracking conditions. In this paper, Lyapunov func-tion is used to analyze the stability of the asis-orbit coupling system. The experimental results show that the proposed method has a good control effect on the stability and saturation of the system.

References

[1]  王剑颖. 航天器姿轨一体化动力学建模、控制与导航方法研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2013.
[2]  杨一岱, 荆武兴, 张召. 一种挠性航天器的对偶四元数姿轨耦合控制方法[J]. 宇航学报, 2016, 37(8): 946-956.
[3]  Gong, S., Baoyin, H. and Li, J. (2009) Coupled Attitude-Orbit Dynamics and Control for Displaced Solar Orbits. Acta Astronautica, 65, 730-737.
https://doi.org/10.1016/j.actaastro.2009.03.006
[4]  刘向东, 刘海阔, 杜长坤, 等. 基于多智能体系统的多航天器编队分布式姿态协同控制[J]. 上海航天(中英文), 2022, 39(4): 94-103.
[5]  Yamanaka, K. (2000) Simulataneous Translation and Rotation Control Law for Formation Flying Satellites. AIAA Guidance, Navigation, and Control Conference and Exhibit, August 14-17, 2000, Denver, 4440.
https://doi.org/10.2514/6.2000-4440
[6]  Zheng, Z., Zhou, H., Chen, B., et al. (2011) Sliding Mode Control for Satellite Proximity Operations with Coupled Attitude and Orbit Dynamics. 2011 2nd International Conference on Intelligent Control and Information Processing, 2, 824-829.
https://doi.org/10.1109/ICICIP.2011.6008363
[7]  Harris, A.T., Petersen, C.D. and Schaub, H. (2020) Linear Coupled Attitude-Orbit Control Through Aerodynamic Drag. Journal of Guidance, Control, and Dy-namics, 43, 122-131.
https://doi.org/10.2514/1.G004521
[8]  何通杰, 宋晓娟, 吴涛涛. 基于对偶四元数的航天器姿轨耦合动力学分析[J]. 内蒙古工业大学学报(自然科学版), 2022, 41(6): 516-522.
[9]  Wu, J., Liu, K. and Han, D. (2013) Adaptive Sliding Mode Control for Six-DOF Relative Motion of Spacecraft with Input Constraint. Acta Astronautica, 87, 64-76.
https://doi.org/10.1016/j.actaastro.2013.01.015
[10]  Misra, G., Izadi, M., Sanyal, A., et al. (2016) Coupled Orbit-Attitude Dynamics and Relative State Estimation of Spacecraft near Small Solar System Bodies. Advances in Space Research, 57, 1747-1761.
https://doi.org/10.1016/j.asr.2015.05.023
[11]  王剑颖, 梁海朝, 孙兆伟. 基于对偶数的相对耦合动力学与控制[J]. 宇航学报, 2010, 31(7): 1711-1717.
[12]  Song, X.J. and Lu, S.F. (2019) Attitude Maneuver Control of Liquid-Filled Space-craft with Unknown Inertia and Disturbances. Journal of Vibration and Control, 25, 1460-1469.
https://doi.org/10.1177/1077546318820414
[13]  Kim, M.J.U.N., Kim, M.S.O.O. and Shin, S.Y.A (1996) Compact Dif-ferential Formula for the first Derivative of a Unit Quaternion Curve. The Journal of Visualization and Computer Animation, 7, 43-57.
https://doi.org/10.1002/(SICI)1099-1778(199601)7:1<43::AID-VIS136>3.0.CO;2-T

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133