We consider the following (1 + 3)-dimensional P(1,4)-invariant partial differential equations (PDEs): the Eikonal equation, the Euler-Lagrange-Born-Infeld equation, the homogeneous Monge-Ampère equation, the inhomogeneous Monge-Ampère equation. The purpose of this paper is to construct and classify the common invariant solutions for those equations. For this aim, we have used the results concerning construction and classification of invariant solutions for the (1 + 3)-dimensional P(1,4)-invariant Eikonal equation, since this equation is the simplest among the equations under investigation. The direct checked allowed us to conclude that the majority of invariant solutions of the (1 + 3)-dimensional Eikonal equation, obtained on the base of low-dimensional (dimL ≤ 3) nonconjugate subalgebras of the Lie algebra of the Poincaré group P(1,4), satisfy all the equations under investigation. In this paper, we present obtained common invariant solutions of the equations under study as well as the classification of those invariant solutions.
References
[1]
Rumer, Y.B. (1956) Studies in 5-Dimensional Optics. State Publishing Office for Technico-Theoretical Literature, Moscow.
[2]
Lizzi, F., Marmo, G., Sparano, G. and Vinogradov, A.M. (1994) Eikonal Type Equations for Geometrical Singularities of Solutions in Field Theory. Journal of Geometry and Physics, 14, 211-235. https://doi.org/10.1016/0393-0440(94)90008-6
[3]
Marciano-Melchor, M., Newman, E.T. and Silva-Ortigoza, G. (2005) 4D Conformal Metrics, the Eikonal Equation and Fourth-Order ODEs. Classical Quantum Gravity, 22, 5073-5088. https://doi.org/10.1088/0264-9381/22/23/010
[4]
Borovskikh, A.V. (2014) Eikonal Equation for Anisotropic Media. Journal of Mathematical Sciences, 197, 248-289. https://doi.org/10.1007/s10958-014-1714-5
[5]
Mieling, T.B. (2021) The Response of Laser Interferometric Gravitational Wave Detectors Beyond the Eikonal Equation. Classical Quantum Gravity, 38, Article ID: 175007. https://doi.org/10.1088/1361-6382/ac15db
[6]
Lie, S. (1879) Beitrage zur Theorie der Minimalflächen. I. Proektivische Untersuchungen über algebraische Minimalflächen. Mathematische Annalen, 14, 331-416. https://doi.org/10.1007/BF01677141
[7]
Lie, S. (1879) Beitrage zur Theorie der Minimalflächen. II. Metrische untersuchungen über algebraische Minimalflächen. Mathematische Annalen, 15, 465-506. https://doi.org/10.1007/BF02086273
[8]
Shavokhina, N.S. (1990) Minimal Surfaces and Nonlinear Electrodynamics. World Scientific Publishing Co Pte Ltd., Teaneck, 504-511.
[9]
Bîlă, N. (1999) Lie Groups Applications to Minimal Surfaces PDE. Differential Geometry—Dynamical Systems, 1, 1-9.
[10]
Grundland, A.M. and Hariton, A. (2017) Algebraic Aspects of the Supersymmetric Minimal Surface Equation, Symmetry, 9, Article 318. https://doi.org/10.3390/sym9120318
[11]
Caffarelli, L.A. and Sire, Y. (2020) Minimal Surfaces and Free Boundaries: Recent Developments. Bulletin of the American Mathematical Society, 57, 91-106. https://doi.org/10.1090/bull/1673
[12]
Li, H.Y. and Yan, W.P. (2020) Explicit Self-Similar Solutions for a Class of Zero Mean Curvature Equation and Minimal Surface Equation. Nonlinear Analysis, 197, Article ID: 111814. https://doi.org/10.1016/j.na.2020.111814
[13]
Born, M. (1934) On the Quantum Theory of Electromagnetic Field. Proceedings of the Royal Society A, 143, 410-437. https://doi.org/10.1098/rspa.1934.0010
[14]
Born, M. and Infeld, L. (1934) Foundations of the New Field Theory. Proceedings of the Royal Society A, 144, 425-451. https://doi.org/10.1098/rspa.1934.0059
[15]
Makarenko, A.N., Odintsov, S.D. and Olmo, G.J. (2014) Little Rip, ΛCDM and Singular Dark Energy Cosmology from Born-Infeld-f(R) Gravity. Physics Letters B, 734, 36-40. https://doi.org/10.1016/j.physletb.2014.05.024
[16]
Harko, T., Lobo, F.S.N., Mak, M.K. and Sushkov, S.V. (2015) Wormhole Geometries in Eddington-Inspired Born-Infeld Gravity. Modern Physics Letters A, 30, Article ID: 1550190. https://doi.org/10.1142/S0217732315501904
[17]
Elizalde, E. and Makarenko, A.N. (2016) Singular Inflation from Born-Infeld-f(R) gravity. Modern Physics Letters A, 31, Article ID: 1650149. https://doi.org/10.1142/S0217732316501492
[18]
Kruglov, S.I. (2019) Dyonic Black Holes in Framework of Born-Infeld-Type Electrodynamics. General Relativity and Gravitation, 51, Article No. 121. https://doi.org/10.1007/s10714-019-2603-5
[19]
Jayawiguna, B.N. and Ramadhan, H.S. (2019) Charged Black Holes in Higher-Dimensional Eddington-Inspired Born-Infeld Gravity. Nuclear Physics B, 943, Article ID: 114615. https://doi.org/10.1016/j.nuclphysb.2019.114615
[20]
Bahrami-Asl, B. and Hendi, S.H. (2020) Complexity of the Einstein-Born-Infeld-Massive Black Holes. Nuclear Physics B, 950, Article ID: 114829. https://doi.org/10.1016/j.nuclphysb.2019.114829
[21]
Chernikov, N.A. and Shavokhina, N.S. (1986) The Born-Infeld Theory as Part of Einstein.s Unified Field Theory. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 4, 62-64
[22]
Chernitskii, A.A. (2020) Fundamental Interactions and Quantum Behavior in Unified Field Theory. International Journal of Modern Physics A, 35, Article ID: 2040021. https://doi.org/10.1142/S0217751X20400217
[23]
Lie, S. (1877) Neue Integrationsmethods der Monge-Ampérschen Gleichung. Archiv der Mathematik, 2, 1-9.
[24]
Lie, S. (1898) Zur Geometrie einer Monge'schen Gleichung. Berichte Sächs. Ges., 50, 1-2.
[25]
Minkowski, H. (1903) Volumen und Oberfläche. Mathematische Annalen, 57, 447-495. https://doi.org/10.1007/BF01445180
[26]
Țițeica, G. (1907) Sur une nouvelle classe de surfaces, Comptes Rendus Mathématique. Académie des Sciences. Paris, 144, 1257-1259.
[27]
Jörgens, K. (1954) Über die Lösungen der Differentialgleichung rt – s2 = 1, Mathematische Annalen, 127, 130-134. https://doi.org/10.1007/BF01361114
[28]
Calabi, E. (1958) Improper Affine Hyperspheres of Convex Type and a Generalization of a Theorem by K.Jörgens. Michigan Mathematical Journal, 5, 105-126. https://doi.org/10.1307/mmj/1028998055
[29]
Pogorelov, A.V. (1975) The Multidimensional Minkowski Problem. Nauka, Moscow.
Zhdanov, R.Z. (1988) General Solution of the Multidimensional Monge-Ampère Equation. In: Symmetry Analysis and Solutions of Equations of Mathematical Physics (Russian), Academy of Sciences of Ukrainian Soviet Socialist Republic, Institute of Mathematics, Kiev, 13-16.
[32]
Mokhov, O.I. and Nutku, Y. (1994) Bianchi Transformation between the Real Hyperbolic Monge-Ampère Equation and the Born-Infeld Equation. Letters in Mathematical Physics, 32, 121-123. https://doi.org/10.1007/BF00739421
[33]
Udrişte, C. and Bîlă, N. (1999) Symmetry Lie Group of the Monge-Ampère Equation. Applied Sciences, 1, 60-74.
[34]
Fu, Ji-Xiang and Yau, Shing-Tung (2007) A Monge-Ampère-Type Equation Motivated by String Theory. Communications in Analysis and Geometry, 15, 29-75. https://doi.org/10.4310/CAG.2007.v15.n1.a2
[35]
Fu, Ji-Xiang and Yau, Shing-Tung. (2008) The Theory of Superstring with Flux on non-Kähler Manifolds and the Complex Monge-Ampère Equation. Journal of Differential Geometry, 78, 369-428. https://doi.org/10.4310/jdg/1207834550
[36]
Yau, S.-T. and Nadis, S. (2010) The Shape of Inner Space. String Theory and the Geometry of the Universe’s Hidden Dimensions. Basic Books, New York.
[37]
Jiang, F. and Trudinger, N.S. (2018) On the Second Boundary Value Problem for Monge-Ampère Type Equations and Geometric Optics. Archive for Rational Mechanics and Analysis, 229, 547-567. https://doi.org/10.1007/s00205-018-1222-8
[38]
Yau, S.-T. and Nadis, S. (2019) The Shape of a Life. One Mathematician’s Search for the Universe’s Hidden Geometry. Yale University Press, New Haven.
[39]
Awanou, G. (2021) Computational Nonimaging Geometric Optics: Monge-Ampère. Notices of the American Mathematical Society 68, 186-193. https://doi.org/10.1090/noti2220
[40]
Fushchich, W.I., Shtelen, W.M. and Serov, N.I. (1993) Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics. Kluwer Academic Publishers Group, Dordrecht. https://doi.org/10.1007/978-94-017-3198-0
[41]
Lie, S. (1895) Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger Ordnung. Berichte Sächs. Ges., 47, 53-128.
[42]
Ovsiannikov, L.V. (1982) Group Analysis of Differential Equations. Academic Press, New York. https://doi.org/10.1016/B978-0-12-531680-4.50012-5
[43]
Olver, P.J. (1986) Applications of Lie Groups to Differential Equations. In: Hersh, P., Vakil, R. andWunsch, J., Eds., Graduate Texts in Mathematics, Springer-Verlag, New York. https://doi.org/10.1007/978-1-4684-0274-2
[44]
Fushchich, V.I., Barannik, L.F. and Barannik, A.F. (1991) Subgroup Analysis of Galilei and Poincaré Groups and the Reduction of Nonlinear Equations. Naukova Dumka, Kiev.
[45]
Li, X.X., Liu, H.Z. and Chang, L.N. (2020) Invariant Subspaces and Exact Solutions to the Generalized Strongly Dispersive DGH Equation. Journal of Applied Mathematics and Physics, 8, 1654-1663. https://doi.org/10.4236/jamp.2020.88126
[46]
Zhang, Q., Xiong, M. and Chen, L. (2020) Exact Solutions of Two Nonlinear Partial Differential Equations by the First Integral Method. Advances in Pure Mathematics, 10, 12-20. https://doi.org/10.4236/apm.2020.101002
[47]
Fedorchuk, V. and Fedorchuk, V. (2016) On Classification of Symmetry Reductions for the Eikonal Equation. Symmetry, 8, Article 51. https://doi.org/10.3390/sym8060051
[48]
Fedorchuk, V. and Fedorchuk, V. (2018) Classification of Symmetry Reductions for the Eikonal Equation. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of National Academy of Sciences of Ukraine, Lviv, Ukraine.
[49]
Fushchich, W.I. and Nikitin, A.G. (1980) Reduction of the Representations of the Generalized Poincaré Algebra by the Galilei Algebra. Journal of Physics A: Mathematical and General, 13, 2319-2330. https://doi.org/10.1088/0305-4470/13/7/015
[50]
Fedorchuk, V.M. and Fedorchuk, V.I. (2006) On Classification of the Low-Dimensional Nonconjugate Subalgebras of the Lie Algebra of the Poincaré Group P(1,4). Proceedings of Institute of Mathematics of NAS of Ukraine, 3, 302-308.