|
基于GR-CNN改进的抓取检测算法及仿真
|
Abstract:
随着计算机视觉的发展,抓取检测在机器人视觉领域取得了广泛应用,以往的抓取检测方法存在对抓取相关特征学习不够重视、检测精度低、泛化能力差等问题。GR-CNN算法解决了之前这些检测算法存在的一些问题,但是该算法预测的抓取框所处位置和角度有时会存在不准确的情况。针对这一问题,对该算法进行改进优化。通过加入CBAM注意力机制模块使网络主要集中于学习可抓取的信息,从而提高抓取预测的准确性。并在ROS环境下对改进后的算法进行验证,通过Gazebo与MoveIt!联合仿真,使用UR5机械臂对桌面上随机放置的四类物体进行抓取放置任务,平均抓取成功率达到86%,实验结果表明改进后的算法抓取框适应性更强,对规则物体与形状结构复杂的物体都可以有效抓取。
With the development of computer vision, grasp detection has been widely used in the field of robot vision. The previous grasp detection methods have some problems, such as not paying enough at-tention to grasp-related feature learning, low detection accuracy and poor generalization ability. The GR-CNN algorithm solves some problems existing in the previous detection algorithms, but the position and Angle of the grab frame predicted by the algorithm are sometimes inaccurate. To solve this problem, the algorithm is improved and optimized. By adding CBAM attention mechanism module, the network mainly focuses on learning the information that can be captured, so as to im-prove the accuracy of grasping prediction. The improved algorithm was verified in ROS environ-ment through Gazebo and MoveIt! Jointly, the UR5 robot arm is used to carry out the grasping sim-ulation task of four types of objects randomly placed on the table, and the average grasping success rate reaches 86%. The experimental results show that the improved algorithm has stronger adaptability to the grasping frame, and can effectively grasp both regular objects and objects with complex shapes and structures.
[1] | Caldera, S., Rassau, A. and Chai, D. (2018) Review of Deep Learning Methods in Robotic Grasp Detection. Multimodal Tech-nologies and Interaction, 2, 57. https://doi.org/10.3390/mti2030057 |
[2] | Ye, L., Xia, X., Chai, B., et al. (2021) Applica-tion of Deep Learning in Workpiece Defect Detection. Procedia Computer Science, 183, 267-273. https://doi.org/10.1016/j.procs.2021.02.058 |
[3] | 刘艳, 冯志杰. SSD深度学习算法在机械手抓取系统中的应用[J]. 组合机床与自动化加工技术, 2020, 556(6): 67-70. |
[4] | Redmon, J. and Angelova, A. (2015) Real-Time Grasp Detection Using Convolutional Neural Networks. 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, 26-30 May 2015, 1316-1322.
https://doi.org/10.1109/ICRA.2015.7139361 |
[5] | 刘亚欣, 王斯瑶, 姚玉峰, 等. 机器人抓取检测技术的研究现状[J]. 控制与决策, 2020, 35(12): 2817-2828. |
[6] | 陈春朝, 孙东红. 基于YOLOv5的角度优化抓取检测算法研究[J/OL]. 计算机工程与应用, 1-9.
http://kns.cnki.net/kcms/detail/11.2127.tp.20230118.1624.007.html, 2023-06-07. |
[7] | Asif, U., Tang, J. and Harrer, S. (2018) EnsembleNet: Improving Grasp Detection Using an Ensemble of Convolutional Neural Networks. BMVC, 10, 1-12. |
[8] | Lenz, I., Lee, H. and Saxena, A. (2015) Deep Learning for Detecting Robotic Grasps. The International Journal of Robotics Research, 34, 705-724. https://doi.org/10.1177/0278364914549607 |
[9] | Gariépy, A., Ruel, J.C., Chaib-Draa, B., et al. (2019) Gq-stn: Optimizing One-Shot Grasp Detection Based on Robustness Classifier. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, 3-8 November 2019, 3996-4003. https://doi.org/10.1109/IROS40897.2019.8967785 |
[10] | Morrison, D., Corke, P. and Leitner, J. (2020) Learning Robust, Real-Time, Reactive Robotic Grasping. The International Journal of Robotics Research, 39, 183-201. https://doi.org/10.1177/0278364919859066 |
[11] | Yu, H., Lai, Q., et al. (2019) A Cascaded Deep Learning Framework for Real-Time and Robust Grasp Planning. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, 6-8 December 2019, 1380-1386. https://doi.org/10.1109/ROBIO49542.2019.8961531 |
[12] | Wang, S., Jiang, X., Zhao, J., et al. (2019) Efficient Fully Convolution Neural Network for Generating Pixel Wise Robotic Grasps with High Resolution Images. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, 6-8 December 2019, 474-480.
https://doi.org/10.1109/ROBIO49542.2019.8961711 |
[13] | Kumra, S., Joshi, S. and Sahin, F. (2020) Antipodal Robot-icgrasping Using Generative Residual Convolutional Neural Network. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, 24 October 2020-24 January 2021, 9626-9633. https://doi.org/10.1109/IROS45743.2020.9340777 |
[14] | Fu, H., Song, G. and Wang, Y. (2021) Improved YOLOv4 Ma-rine Target Detection Combined with CBAM. Symmetry, 13, 623. https://doi.org/10.3390/sym13040623 |
[15] | 关立文, 孙鑫磊, 杨佩. 基于关键点估计的抓取检测算法[J]. 计算机工程与应用, 2022, 58(4): 267-274. |
[16] | 孙鑫磊. 基于RGB-D图像的抓取检测深度学习算法研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2021. |
[17] | Jung, H., Kim, M., Chen, Y., et al. (2020) Implementation of a Unified Simulation for Robot Arm Control with Object Detection Based on ROS and Gazebo. 2020 17th International Conference on Ubiquitous Robots (UR), Kyoto, 22-26 June 2020, 368-372. https://doi.org/10.1109/UR49135.2020.9144984 |