|
使用机器学习算法基于行为决定因素的宫颈癌早期检测
|
Abstract:
宫颈癌是最常见的女性生殖道恶性肿瘤,发病率在女性恶性肿瘤中居第二位,在某些发展中国家甚至位居首位。在我国,宫颈癌也是危害女性健康与生命的重要疾病。幸运的是,女性可以通过接种HIV疫苗和定期筛查来预防这种疾病,但目前预防方法的结果和参与度都比较低。一方面是由于经济条件的限制,另一方面是因为女性本身预防知识和意识的缺乏。因此,为了积极预防宫颈癌,本文分别利用逻辑斯蒂回归、线性判别分析、二次判别分析、朴素贝叶斯、K-近邻方法检测基于行为决定因素的宫颈癌风险,并选择准确率最高的预测方法。而在正式进行预测分类前,本文利用主成分分析对数据进行降维处理;利用交叉验证对变量进行选择。
Cervical cancer is the most common malignancy of the female reproductive tract, ranking second in incidence and even first in some developing countries. In China, cervical cancer is also an important disease that endangers women’s health and life. Fortunately, women can prevent the disease through HIV vaccination and regular screening, but current prevention methods have low outcomes and participation. On the one hand, it is due to the restrictions of economic conditions, and on the other hand, it is because of the lack of prevention knowledge and awareness of women themselves. Therefore, in order to actively prevent cervical cancer, this paper used logistic regression, linear discriminant analysis, quadratic discriminant analysis, naive Bayes and K-nearest neighbor methods to detect the risk of cervical cancer based on behavioral determinants, and selected the prediction method with the highest accuracy. Before the formal prediction classification, this paper uses principal component analysis to reduce the dimension of the data. Use cross-validation to select variables.
[1] | 冷雪娇, 吴沁航, 王卓. 宫颈癌预防及治疗研究进展[J]. 现代医药卫生, 2021, 37(24): 4241-4245. |
[2] | 徐宁志. 人类宫颈癌防治的挑战和愿景[J]. 张江科技评论, 2021(6): 20-23. |
[3] | 曹蕾, 杨丽云, 程欣, 朱佩茹. 育龄期女性宫颈癌筛查前焦虑状况及其影响因素分析[J]. 护理实践与研究, 2021, 18(24): 3645-3649. |
[4] | 周琦, 吴小华, 刘继红, 李力, 朱笕青, 白萍, 盛修贵. 宫颈癌诊断与治疗指南(第四版) [J]. 中国实用妇科与产科杂志, 2018, 34(6): 613-622. |
[5] | 刘萍. 中国大陆13年宫颈癌临床流行病学大数据评价[J]. 中国实用妇科与产科杂志, 2018, 34(1): 41-45. |
[6] | 乔友林, 赵宇倩. 宫颈癌的流行病学现状和预防[J]. 中华妇幼临床医学杂志(电子版), 2015, 11(2): 1-6. |
[7] | 张燕茹, 王月云, 刘植华. 宫颈癌防治研究进展[J]. 中国肿瘤, 2015, 24(12): 998-1002. |
[8] | 李荣. 宫颈癌根治术后患者的病耻感及其与生活质量的相关性[D]: [硕士学位论文]. 济南: 山东大学, 2015. |
[9] | Sobar, Machmud, R. and Wijaya, A. (2016) Behavior Determinant Based Cervical Cancer Early Detection with Machine Learning Algorithm. Journal of Computational and Theoretical Nanoscience, 22, 3120-3123.
https://doi.org/10.1166/asl.2016.7980 |
[10] | 程静新, 姚立丽, 李贺月, 袁敏, 周萍, 袁建林, 张怡. 5766例宫颈癌临床特征分析[J]. 实用妇产科杂志, 2014, 30(10): 768-772. |