|
基于PCD刀具的TA15钛合金精密铣削工艺优化及刀具磨损研究
|
Abstract:
采用聚晶金刚石(PCD)刀具对TA15钛合金进行高效精密铣削试验,对比研究主轴转速、铣削深度、铣削宽度及每齿进给量等铣削参数对钛合金加工表面质量的影响,根据优化的铣削参数开展PCD刀具的磨损实验研究。钛合金铣削实验结果表面,当主轴转速N、铣削深度ap、铣削宽度ae、每齿进给量fz分别为12,000 r/min、3 mm、20 μm、0.02 mm/z时,PCD刀具侧铣TA15钛合金的切削性能最好,钛合金铣削表面粗糙度可达0.055 μm。磨损实验结果表明,PCD刀具的磨损趋势与理论磨损曲线相吻合,经历初期磨损、稳定磨损、剧烈磨损三个状态,刀具磨损量及铣削表面粗糙度随铣削长度的累加而增长,当铣削长度为210 m时后刀面局部最大磨损宽度达到259.9 μm,同时钛合金表面粗糙度可达0.312 μm,表面存在少量的粘钛,但是刀具在铣削218 min后仍能保证一定的切削性能,能有效实现TA15钛合金长时间的高效精密铣削加工。
Polycrystalline diamond (PCD) tools were used to carry out high-efficiency precision milling tests on TA15 titanium alloy, to comparatively study the influence of milling process parameters such as spindle speed, milling depth, milling width and feed per tooth on the surface quality of titanium al-loy machining, and to carry out experimental studies on the wear of PCD tools according to the op-timised process parameters. The results of titanium alloy milling experiments show that when the spindle speed N, milling depth ap, milling width ae, and feed per tooth fz are 12,000 r/min, 3 mm, 20 μm, and 0.02 mm/z, respectively, the PCD tool has the best cutting performance in side milling of TA15 titanium alloy, and the roughness of the milled surface of titanium alloy is up to 0.055 μm. The results of the wear experiments show that the wear trend of PCD tool is in line with the theoret-ical wear curve. The wear trend coincides with the theoretical wear curve, through the initial wear, stable wear, intense wear of three states, the amount of tool wear and milling surface roughness with the accumulation of the milling length and growth, when the milling length of 210 m, the maximum width of the rear face of the local maximum wear width of 259.9 μm, and at the same time, the surface roughness of the titanium alloy up to 0.312 μm, the surface of the small amount of adhesion to the surface of the titanium alloy, but the tool can still ensure a certain degree of cutting performance after 218 min of milling. However, the cutting performance of the tool can still be guaranteed after 218 min, which can effectively realize the efficient and precise milling of TA15 ti-tanium alloy for a long time.
[1] | Zhao, Q., Sun, Q., Xin, S., et al. (2022) High-Strength Titanium Alloys for Aerospace Engineering Applications: A Review on Melting-Forging Process. Materials Science & Engineering: A, 845, Article ID: 143260.
https://doi.org/10.1016/j.msea.2022.143260 |
[2] | Kaur, M. and Singh, K. (2019) Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications. Materials Science & Engineering: C, 102: 844-862. https://doi.org/10.1016/j.msec.2019.04.064 |
[3] | Su, H., Liu, P., Fu, Y., et al. (2012) Tool Life and Surface Integrity in High-Speed Milling of Titanium Alloy TA15 with PCD/PCBN Tools. Chinese Journal of Aeronautics, 25, 784-790. https://doi.org/10.1016/S1000-9361(11)60445-7 |
[4] | Oosthuizen, A.G., Akdogan, G. and Treurnicht, N. (2011) The Performance of PCD Tools in High-Speed Milling of Ti6Al4V. The International Journal of Advanced Manufacturing Tech-nology, 52, 929-935.
https://doi.org/10.1007/s00170-010-2804-2 |
[5] | Cygan, S., Jaworska, L., Putyra, P., et al. (2017) Thermal Stability and Coefficient of Friction of the Diamond Composites with the Titanium Compound Bonding Phase. Journal of Materials Engi-neering and Performance, 26, 2593-2598. https://doi.org/10.1007/s11665-017-2712-9 |
[6] | Lü, W., Li, G., Zhou, Y., et al. (2020) Effect of High Hardness and Adhesion of Gradient TiAlSiN Coating on Cutting Performance of Titanium Alloy. Journal of Alloys and Compounds, 820, Article ID: 153137.
https://doi.org/10.1016/j.jallcom.2019.153137 |
[7] | Sorgato, M., Bertolini, R., Ghiotti, A. and Bruschi, S. (2021) Tool Wear Analysis in High-Frequency Vibration-Assisted Drilling of Additive Manufactured Ti6Al4V Alloy. Wear, 477, Article ID: 203814.
https://doi.org/10.1016/j.wear.2021.203814 |
[8] | Khoshaim, A.B., Muthuramalingam, T., Moustafa, E.B., Elsheikh, A., et al. (2023) Influences of Tool Electrodes on Machinability of Titanium α-β Alloy with ISO Energy Pulse Generator in EDM Process. Alexandria Engineering Journal, 63, 465-474. https://doi.org/10.1016/j.aej.2022.07.059 |
[9] | Chen, N., Li, Z.J., Wu, Y., Zhao, G.L., Li, L. and He, N. (2019) Investigating the Ablation Depth and Surface Roughness of Laser-Induced Nano-Ablation of CVD Diamond Material. Precision Engineering, 57, 220-228.
https://doi.org/10.1016/j.precisioneng.2019.04.009 |
[10] | Denkena, B., Lucas, A. and Bassett, E. (2011) Effects of the Cut-ting Edge Microgeometry on Tool Wear and Its Thermo-Mechanical Load. CIRP Annals, 60, 73-76. https://doi.org/10.1016/j.cirp.2011.03.098 |
[11] | Nguyen, V.C., Nguyen, T.D. and Tien, D.H. (2021) Cutting Parameter Optimization in Finishing Milling of Ti-6Al-4V Titanium Alloy under MQL Condition Using TOPSIS and ANOVA Analysis. Engineering, Technology & Applied Science Research, 11, 6775-6780. https://doi.org/10.48084/etasr.4015 |
[12] | Li, A., Zhao, J., Wang, D., et al. (2013) Failure Mechanisms of a PCD Tool in High-Speed Face Milling of Ti-6Al-4V Alloy. The In-ternational Journal of Advanced Manufacturing Technology, 67, 1959-1966.
https://doi.org/10.1007/s00170-012-4622-1 |
[13] | Ezugwu, O.E., Bonney, J., Silva, D.B.R., et al. (2007) Surface Integrity of Finished Turned Ti-6Al-4V Alloy with PCD Tools Using Conventional and High Pressure Coolant Supplies. International Journal of Machine Tools & Manufacture, 47, 884-891. https://doi.org/10.1016/j.ijmachtools.2006.08.005 |
[14] | Pan, W., Ding, S. and Mo, J. (2014) Thermal Characteristics in Milling Ti6Al4V with Polycrystalline Diamond Tools. The International Journal of Advanced Manufacturing Technology, 75, 1077-1087.
https://doi.org/10.1007/s00170-014-6094-y |
[15] | 王晓明, 韩江. TC4钛合金高速铣削表面粗糙度研究[J]. 机械设计与制造, 2019(5): 232-236, 240.
https://doi.org/10.19356/j.cnki.1001-3997.2019.05.058 |
[16] | 姚炀. PCD刀具车削超硬铝合金的切削性能及参数优化研究[D]: [硕士学位论文]. 镇江: 江苏大学, 2019. |
[17] | 李克强. 钛合金车削用PCD刀具优选及切削参数优化[D]: [硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2013. |
[18] | 李阳阳. PCD刀具切削钛基复合材料试验研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2016. |