全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于YOLOv5n_Faster的煤矿变电所开关柜目标检测
Object Detection of Coal Mine Substation Switch Cabinets Based on YOLOv5n_Faster

DOI: 10.12677/MOS.2023.126446, PP. 4916-4925

Keywords: 目标检测,轻量化,YOLOv5,开关柜检测
Object Detection
, Lightweight, YOLOv5, Switch Cabinet Detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了满足煤矿变电所实时巡检的需求,需要使用速度快且精度高的目标检测算法。为此本文提出一种改进的YOLOv5n模型,使用PConv代替普通卷积,减少特征图冗余,提高计算速度。使用α-CIoU替换了YOLOv5中原本的CIoU损失函数,通过调整α参数的值来提高模型的自适应性能。为了解决自制数据集数据量不够的问题,使用图像增强对有限的数据集进行扩充,对开关等小目标进行额外图像增强。在对煤矿变电所开关柜数据集中的实测结果表明,使用改进后的YOLOv5n模型进行目标检测,该模型的平均准确度为98.8%,比原始的YOLOv5n模型提高了0.3%的精度,平均时间缩短了55.621 ms,可以同时满足目标检测的精度和速度需求,可应用于实际的开关柜检测场景。
To meet the real-time inspection needs of coal mine substations, a fast and accurate target detection algorithm is required. This paper proposes an improved YOLOv5n model that uses PConv instead of ordinary convolution to reduce feature map redundancy and improve computational speed. The α-CIoU loss function is used to replace the original CIoU loss function in YOLOv5, and the adaptive performance of the model is improved by adjusting the value of the α parameter. To address the is-sue of insufficient data volume in the self-made dataset, image augmentation is used to expand the limited dataset, with additional image augmentation applied to small targets such as switches. The experimental results on the switch cabinet dataset of a coal mine substation show that the im-proved YOLOv5n model achieves an average accuracy of 98.8% in target detection, which is 0.3% higher than the original YOLOv5n model, and reduces the average time by 55.621 ms. This model can simultaneously meet the accuracy and speed requirements of target detection and can be ap-plied in actual switch cabinet detection scenarios.

References

[1]  罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述[J]. 电子学报, 2020, 48(6): 1230-1239.
[2]  王鑫, 曾愚, 魏怀灏. 基于改进的Yolo v3模型的设备状态检测方法[J]. 南开大学学报(自然科学版), 2022, 54(6): 7.
[3]  尹子会, 孟荣, 范晓丹, 等. 融合边缘计算和改进Faster R-CNN的变电站设备典型视觉缺陷检测系统[J]. 中国科技论文, 2021, 16(3): 343-348.
[4]  张阳, 刘小芳, 李汶蔚. 基于改进YOLOv5n的带钢表面缺陷检测算法[J]. 四川轻化工大学学报(自然科学版), 2022, 35(5): 60-67.
[5]  涂成凤, 易安林, 姚涛, 等. 轻量化YOLOv5n的高精度垃圾检测算法[J]. 计算机工程与应用, 2023, 59(10): 187-195.
[6]  周鹏成, 黎远松, 石睿, 等. 基于改进YOLOv5n的轻量化光学遥感图像目标检测[J]. 无线电工程, 2023, 53(7): 1544-1553
[7]  崔昊杨, 杨可欣, 葛海华, 等. 面向电力开关柜的轻量型GB-YOLOv5m状态检测方法[J]. 电子与信息学报, 2022, 44(MXQ): 1-11.
[8]  华泽玺, 施会斌, 罗彦, 等. 基于轻量级YOLO-v4模型的变电站数字仪表检测识别[J/OL]. 西南交通大学学报, 2023: 1-11.
https://kns.cnki.net/kcms/detail/51.1277.U.20211027.1050.003.html
[9]  Liu, Y.G., Yang, F. and Yang, Y.D. (2023) A Partial Convolution Generative Adversarial Network for Lesion Synthesis and Enhanced Liver Tumor Segmentation. Journal of Applied Clinical Medical Physics, 24, e13927.
[10]  Yan, S.L. and Zhang, X.F. (2022) PCNet: Partial Convolution Attention Mechanism for Image Inpainting. International Journal of Computers and Applications, 44, 738-745.
https://doi.org/10.1080/1206212X.2021.1909280
[11]  Liu, G.L., Dundar, A., Shih, K.J., et al. (2022) Partial Convolution for Padding, Inpainting, and Image Synthesis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 6096-6110.
[12]  Chen, J., Kao, S., He, H., et al. (2023) Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, 17-24 June 2023, 12021- 12031.
https://doi.org/10.1109/CVPR52729.2023.01157
[13]  梅礼坤, 陈智利, 李栋琪. 基于改进YOLOv5轻量化坦克目标检测算法[J/OL]. 激光杂志, 2023: 1-10.
https://kns.cnki.net/kcms/detail/50.1085.TN.20230626.1958.016.html
[14]  郑远攀, 许博阳, 王振宇. 改进的YOLOv5烟雾检测模型[J]. 计算机工程与应用, 2023, 59(7): 214-221.
[15]  王红尧, 韩爽, 李勤怡. 改进YOLOv5的钢丝绳损伤图像识别实验方法研究[J]. 计算机工程与应用, 2023, 59(17): 99-106.
[16]  杨谢柳, 门国文, 梁文峰, 等. 水下图像增强与复原对深度学习目标检测精度的影响研究[J/OL]. 计算机工程, 2023: 1-10.
https://doi.org/10.19678/j.issn.1000-3428.0066610

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133